中国物理B ›› 2022, Vol. 31 ›› Issue (6): 60204-060204.doi: 10.1088/1674-1056/ac615c
所属专题: SPECIAL TOPIC — Interdisciplinary physics: Complex network dynamics and emerging technologies
Wu-Yang Zhu(朱伍洋)1, Yi-Fei Pu(蒲亦非)1,†, Bo Liu(刘博)1, Bo Yu(余波)2, and Ji-Liu Zhou(周激流)3
Wu-Yang Zhu(朱伍洋)1, Yi-Fei Pu(蒲亦非)1,†, Bo Liu(刘博)1, Bo Yu(余波)2, and Ji-Liu Zhou(周激流)3
摘要: The memristor is also a basic electronic component, just like resistors, capacitors and inductors. It is a nonlinear device with memory characteristics. In 2008, with HP's announcement of the discovery of the TiO2 memristor, the new memristor system, memory capacitor (memcapacitor) and memory inductor (meminductor) were derived. Fractional-order calculus has the characteristics of non-locality, weak singularity and long term memory which traditional integer-order calculus does not have, and can accurately portray or model real-world problems better than the classic integer-order calculus. In recent years, researchers have extended the modeling method of memristor by fractional calculus, and proposed the fractional-order memristor, but its concept is not unified. This paper reviews the existing memristive elements, including integer-order memristor systems and fractional-order memristor systems. We analyze their similarities and differences, give the derivation process, circuit schematic diagrams, and an outlook on the development direction of fractional-order memristive elements.
中图分类号: (Integrable systems)