[1] Pancharatnam S 1956 Proc. Indian Acad. Sci. A 44 247 [2] Berry M V 1984 Proc. R. Soc. Lond. A 392 45 [3] Simon B 1983 Phys. Rev. Lett. 51 2167 [4] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405 [5] Zhang S C and Hu J 2001 Science 294 823 [6] Provost J P and Vallee G 1980 Commun. Math. Phys. 76 289 [7] Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111 [8] Ma Y Q, Chen S, Fan H and Liu W M 2010 Phys. Rev. B 81 245129 [9] Zanardi P and Paunkovic N 2006 Phys. Rev. E 74 031123 [10] Carollo A, Valenti D and Spagnolo B 2020 Phys. Rep. 838 1 [11] Zanardi P, Giorda P and Cozzini M 2007 Phys. Rev. Lett. 99 100603 [12] Dey A, Mahapatra S, Roy P and Sarkar T 2012 Phys. Rev. E 86 031137 [13] Yang S, Gu S J, Sun C P and Lin H Q 2008 Phys. Rev. A 78 012304 [14] Garnerone S, Abasto D, Haas S and Zanardi P 2009 Phys. Rev. A 79 032302 [15] Klees R L, Rastelli G, Cuevas J C and Belzig W 2020 Phys. Rev. Lett. 124 197002 [16] Bleu O, Malpuech G, Gao Y and Solnyshkov D D 2018 Phys. Rev. Lett. 121 020401 [17] Palumbo G and Goldman N 2018 Phys. Rev. Lett. 121 170401 [18] Ahn J, Guo G Y and Nagaosa N 2020 Phys. Rev. X 10 041041 [19] Ahn J, Guo G Y, Nagaosa N and Vishwanath A 2021 arXiv:2103.01241[cond-mat.mes-hall] [20] Zhang Y F, Yang Y Y, Ju Y, Sheng L, Shen R, Sheng D N and Xing D Y 2013 Chin. Phys. B 22 117312 [21] Claassen M, Lee C H, Thomale R, Qi X L and Devereaux T P 2015 Phys. Rev. Lett. 114 236802 [22] Yang L, Ma Y Q and Li X G 2015 Physica B 456 359 [23] Piechon F, Raoux A, Fuchs J N and Montambaux G 2016 Phys. Rev. B 94 134423 [24] Pozo O and de Juan F 2020 Phys. Rev. B 102 115138 [25] Qi X L, Hughes T L and Zhang S. C 2008 Phys. Rev. B 78 195424 [26] Murakami S, Nagaosa N and Zhang S C 2004 Phys. Rev. B 69 235206 [27] Weatherburn C E 1938 An Introduction to Riemannian Geometry and the Tensor Calculus (Cambridge:Cambridge University) [28] In the hyperspherical coordinates $\hat{d}_1=\cos \theta_1$, $\hat{d}_2=\sin\theta_1\cos \theta_2$, $\hat{d}_3=\sin\theta_1\sin\theta_2\cos \theta_3$, $\hat{d}_4=\sin\theta_1\sin\theta_2\sin\theta_3\cos\theta_4$, $\hat{d}_5=\sin\theta_1\sin\theta_2\sin\theta_3\sin\theta_4$, the non-zero components of the quantum metric tensor are $g_{\theta_1\theta_1}=\frac{1}{2}$, $g_{\theta_2\theta_2}=\frac{1}{2}\sin^2\theta_1$, $g_{\theta_3\theta_3}=\frac{1}{2}\sin^2\theta_1\sin^2\theta_2$, $g_{\theta_4\theta_4}=\frac{1}{2}\sin^2\theta_1\sin^2 \theta_2\sin^2\theta_3$. It can be seen that these diagonal elements are positive. [29] Eguchi T, Gilkey P B and Hanson A J 1980 Phys. Rep. 66 213 [30] Morgan F 1993 Riemannian Geometry:A Beginner's Guide (Boston:Jones and Bartlett) p. 72 [31] Sugawa S, Salces-Carcoba F, Perry A R, Yue Y and Spielman I B 2018 Science 360 1429 [32] Price H M 2020 Phys. Rev. B 101 205141 [33] Wang Y, Price H M, Zhang B and Chong Y D 2020 Nat. Commun. 11 2356 [34] Yu R, Zhao Y X and Schnyder A P 2020 Natl. Sci. Rev. 7 1288 [35] Ozawa T and Goldman N 2018 Phys. Rev. B 97 201117(R) [36] Roy R 2014 Phys. Rev. B 90 165139 |