中国物理B ›› 2019, Vol. 28 ›› Issue (12): 120306-120306.doi: 10.1088/1674-1056/ab54b8
Fei Yang(杨飞), Yu Yuan(袁毓), Wen-Lu Lin(林文璐), Shu-Ao Liao(廖书傲), Cheng-Jie Zhang(张成杰), Qing Chen(陈清)
收稿日期:
2019-08-13
修回日期:
2019-10-18
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
Qing Chen
E-mail:chenqing@ynu.edu.cn
基金资助:
Fei Yang(杨飞)1,2, Yu Yuan(袁毓)1, Wen-Lu Lin(林文璐)1, Shu-Ao Liao(廖书傲)1,2, Cheng-Jie Zhang(张成杰)3, Qing Chen(陈清)1,2
Received:
2019-08-13
Revised:
2019-10-18
Online:
2019-12-05
Published:
2019-12-05
Contact:
Qing Chen
E-mail:chenqing@ynu.edu.cn
Supported by:
摘要: We propose a family of Hardy-type tests for an arbitrary n-partite system, which can detect different degrees of non-locality ranging from standard to genuine multipartite non-locality. For any non-signaling m-local hidden variable model, the corresponding tests fail, whereas a pass of this type of test indicates that this state is m non-local. We show that any entangled generalized GHZ state exhibits Hardy's non-locality for each rank of multipartite non-locality. Furthermore, for the detection of m non-localities, a family of Bell-type inequalities based on our test is constructed. Numerical results show that it is more efficient than the inequalities proposed in[Phys. Rev. A 94 022110 (2016)].
中图分类号: (Entanglement and quantum nonlocality)
杨飞, 袁毓, 林文璐, 廖书傲, 张成杰, 陈清. Generalized Hardy-type tests for hierarchy of multipartite non-locality[J]. 中国物理B, 2019, 28(12): 120306-120306.
Fei Yang(杨飞), Yu Yuan(袁毓), Wen-Lu Lin(林文璐), Shu-Ao Liao(廖书傲), Cheng-Jie Zhang(张成杰), Qing Chen(陈清). Generalized Hardy-type tests for hierarchy of multipartite non-locality[J]. Chin. Phys. B, 2019, 28(12): 120306-120306.
[1] |
Bell J S 1964 Physics 1 195
doi: 10.1103/PhysicsPhysiqueFizika.1.195 |
[2] |
Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880
doi: 10.1103/PhysRevLett.23.880 |
[3] |
Hensen B, Bernien H, DrÉAu A E, Reiserer A, Kalb N, Blok M S, Ruitenberg J, Vermeulen R F L and Schouten R N 2015 Nature 526 682
doi: 10.1038/nature15759 |
[4] |
Giustina M, Versteegh M A M, Wengerowsky S, Handsteiner J, Hochrainer A and Kevin P 2015 Phys. Rev. Lett. 115 250401
doi: 10.1103/PhysRevLett.115.250401 |
[5] |
Shalm L K, Meyer-Scott E, Christensen B G and Bierhorst P 2015 Phys. Rev. Lett. 115 250402
doi: 10.1103/PhysRevLett.115.250402 |
[6] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
doi: 10.1103/PhysRevLett.67.661 |
[7] |
Barrett J, Hardy L and Kent A 2005 Phys. Rev. Lett. 95 010503
doi: 10.1103/PhysRevLett.95.010503 |
[8] |
Acín A, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Phys. Rev. Lett. 98 230501
doi: 10.1103/PhysRevLett.98.230501 |
[9] |
Buhrman H, Cleve R, Massar S and de Wolf R 2010 Rev. Mod. Phys. 82 665
doi: 10.1103/RevModPhys.82.665 |
[10] |
Pironio S, Acín A, Massar S and Boyer de la Giroday A 2010 Nature 464 1021
doi: 10.1038/nature09008 |
[11] |
Greenberger D M, Horne M A, Shimony A and Zeilinger A 1990 Am. J. Phys. 58 1131
doi: 10.1119/1.16243 |
[12] |
Hardy L 1993 Phys. Rev. Lett. 71 1665
doi: 10.1103/PhysRevLett.71.1665 |
[13] |
Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
doi: 10.1103/RevModPhys.81.865 |
[14] |
Mermin N D 1990 Phys. Rev. Lett. 65 1838
doi: 10.1103/PhysRevLett.65.1838 |
[15] |
Mermin N D 1990 Phys. Rev. Lett. 65 3373
doi: 10.1103/PhysRevLett.65.3373 |
[16] |
Ardehali M 1992 Phys. Rev. A 46 5375
doi: 10.1103/PhysRevA.46.5375 |
[17] |
Belinskii A V and Klyshko D N 1993 Phys. Usp. 36 653
doi: 10.1070/PU1993v036n08ABEH002299 |
[18] |
Werner R F and Wolf M M 2001 Phys. Rev. A 64 032112
doi: 10.1103/PhysRevA.64.032112 |
[19] |
Żukowski M, Brukner Č, Laskowski W and Wieśniak M 2002 Phys. Rev. Lett. 88 210402
doi: 10.1103/PhysRevLett.88.210402 |
[20] |
Svetlichny G 1987 Phys. Rev. D 35 3066
doi: 10.1103/PhysRevD.35.3066 |
[21] |
Seevinck M and Svetlichny G 2002 Phys. Rev. Lett. 89 060401
doi: 10.1103/PhysRevLett.89.060401 |
[22] |
Chen J L, Deng D L, Su H Y, Wu C and Oh C H 2011 Phys. Rev. A 83 022316
doi: 10.1103/PhysRevA.83.022316 |
[23] |
Wang X, Zhang C, Chen A, Yu S, Yuan H and Oh C H 2016 Phys. Rev. A 94 022110
doi: 10.1103/PhysRevA.94.022110 |
[24] |
Cereceda J L 2004 Phys. Lett. A 327 433
doi: 10.1016/j.physleta.2004.06.004 |
[25] |
Jiang S Y, Xu Z P, Su H Y, Pati A K and Chen J L 2018 Phys. Rev. Lett. 120 050403
doi: 10.1103/PhysRevLett.120.050403 |
[26] |
Luo Y H, Su H Y, Huang H L, Wang X L and Yang T 2018 Science Bulletin 63 1611
doi: 10.1016/j.scib.2018.11.025 |
[27] |
Chen Q, Yu S, Zhang C, Lai C H and Oh C H 2014 Phys. Rev. Lett. 112 140404
doi: 10.1103/PhysRevLett.112.140404 |
[28] |
Zhang C, Huang Y F, Zhang C J, Wang J, Liu B H, Li C F and Guo G C 2016 Opt. Express 24 27059
doi: 10.1364/OE.24.027059 |
[29] |
Rahaman R, Wieśniak M and Żukowski M 2014 Phys. Rev. A 90 062338
doi: 10.1103/PhysRevA.90.062338 |
[30] |
Xiang Y 2011 Chin. Phys. B 20 060301
doi: 10.1088/1674-1056/20/6/060301 |
[31] |
Mukherjee A, Roy A, Bhattacharya S S, Das S, Gazi M R and Banik M 2015 Phys. Rev. A 92 022302
doi: 10.1103/PhysRevA.92.022302 |
[32] |
Fedrizzi A, Almeida M P, Broome M A, White A G and Barbieri M 2011 Phys. Rev. Lett. 106 200402
doi: 10.1103/PhysRevLett.106.200402 |
[33] |
Li H W, Pawlowski M, Rahaman R, Guo G C and Han Z F 2015 Phys. Rev. A 92 022327
doi: 10.1103/PhysRevA.92.022327 |
[1] | Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Unified entropy entanglement with tighter constraints on multipartite systems[J]. 中国物理B, 2023, 32(3): 30304-030304. |
[2] | Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis[J]. 中国物理B, 2023, 32(2): 20506-020506. |
[3] | Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Transformation relation between coherence and entanglement for two-qubit states[J]. 中国物理B, 2023, 32(1): 10304-010304. |
[4] | Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides[J]. 中国物理B, 2022, 31(12): 120305-120305. |
[5] | Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Measurement-device-independent one-step quantum secure direct communication[J]. 中国物理B, 2022, 31(12): 120303-120303. |
[6] | Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Quantum correlation and entropic uncertainty in a quantum-dot system[J]. 中国物理B, 2022, 31(10): 100303-100303. |
[7] | Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Measurement-device-independent quantum secret sharing with hyper-encoding[J]. 中国物理B, 2022, 31(10): 100302-100302. |
[8] | Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Steering quantum nonlocalities of quantum dot system suffering from decoherence[J]. 中国物理B, 2022, 31(9): 90302-090302. |
[9] | Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Probabilistic quantum teleportation of shared quantum secret[J]. 中国物理B, 2022, 31(9): 90303-090303. |
[10] | Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Robustness of two-qubit and three-qubit states in correlated quantum channels[J]. 中国物理B, 2022, 31(7): 70302-070302. |
[11] | I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems[J]. 中国物理B, 2022, 31(6): 60301-060301. |
[12] | Bichen Che(车碧琛), Zhao Dou(窦钊), Xiubo Chen(陈秀波), Yu Yang(杨榆), Jian Li(李剑), and Yixian Yang(杨义先). Constructing the three-qudit unextendible product bases with strong nonlocality[J]. 中国物理B, 2022, 31(6): 60302-060302. |
[13] | Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities[J]. 中国物理B, 2022, 31(5): 50303-050303. |
[14] | Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state[J]. 中国物理B, 2022, 31(5): 50301-050301. |
[15] | Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs[J]. 中国物理B, 2022, 31(4): 40308-040308. |
|