›› 2014, Vol. 23 ›› Issue (7): 70302-070302.doi: 10.1088/1674-1056/23/7/070302
李纪强, 周斌
收稿日期:
2014-02-19
修回日期:
2014-03-21
出版日期:
2014-07-15
发布日期:
2014-07-15
基金资助:
Li Ji-Qiang (李纪强), Zhou Bin (周斌)
Received:
2014-02-19
Revised:
2014-03-21
Online:
2014-07-15
Published:
2014-07-15
Contact:
Zhou Bin
E-mail:binzhou@hubu.edu.cn
About author:
03.65.Ud; 03.67.Mn; 75.10.Jm; 75.50.Xx
Supported by:
摘要: We investigate global entanglement in the ground state of single-molecular magnet Na9[Cu3Na3(H2 O)9(α -AsW9O33)2]· 26H2O with an external magnetic field. The concurrence, tangle, and measure function Q, which characterize the pairwise entanglement, 3-party entanglement and total entanglement, respectively, are calculated numerically at zero temperature. The results show that the magnitude and direction of the applied magnetic field play a significant role in the properties of three kinds of entanglement measures. We give a physical interpretation of the variation of the global entanglement with the magnetic field. Finally, the phase diagram of the global entanglement characterized by the critical magnetic fields is presented.
中图分类号: (Entanglement and quantum nonlocality)
李纪强, 周斌. Global entanglement in ground state of {Cu3} single-molecular magnet with magnetic field[J]. , 2014, 23(7): 70302-070302.
Li Ji-Qiang (李纪强), Zhou Bin (周斌). Global entanglement in ground state of {Cu3} single-molecular magnet with magnetic field[J]. Chin. Phys. B, 2014, 23(7): 70302-070302.
[1] | Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394 |
[2] | Hao J C, Li C F and Guo G C 2001 Phys. Rev. A 63 054301 |
[3] | Bruß D, DiVincenzo D P, Ekert A, Fuchs C A, Macchiavello C and Smolin J A 1998 Phys. Rev. A 57 2368 |
[4] | Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517 |
[5] | Bennett C H, Popescu S, Rohrlich D, Smolin J A and Thapliyal A V 2000 Phys. Rev. A 63 012307 |
[6] | Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306 |
[7] | Meyer D A and Wallach N R 2002 J. Math. Phys. 43 4273 |
[8] | Brennen G K 2003 Quantum Inf. Comput. 3 619 |
[9] | Rungta P, Bužek V, Caves C M, Hillery M and Milburn G J 2001 Phys. Rev. A 64 042315 |
[10] | Hide J, Nakata Y and Murao M 2012 Phys. Rev. A 85 042303 |
[11] | Yu C S and Song H S 2006 Phys. Rev. A 73 022325 |
[12] | Montakhab A and Asadian A 2010 Phys. Rev. A 82 062313 |
[13] | Wang Y F, Cao J P and Wang Y P 2005 Chin. Phys. Lett. 22 2151 |
[14] | Wu K D, Zhou B and Cao W Q 2007 Phys. Lett. A 362 381 |
[15] | Chen S R, Xia Y J and Man Z X 2010 Chin. Phys. B 19 050304 |
[16] | Ren J Z, Shao X Q, Zhang S and Yeon K H 2010 Chin. Phys. B 19 100307 |
[17] | Pan H Z and Kuang L M 2004 Chin. Phys. Lett. 21 424 |
[18] | Xi X Q, Hao S R, Chen W X and Yue R H 2002 Chin. Phys. Lett. 19 1044 |
[19] | Zhang Y L and Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese) |
[20] | Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R and Barbara B 1996 Nature 383 145 |
[21] | Wernsdorfer W and Sessoli R 1999 Science 284 133 |
[22] | Kortz U, Nellutla S, Stowe A C, Dalal N S, Rauwald U, Danquah W and Ravot D 2004 Inorg. Chem. 43 2308 |
[23] | Choi K Y, Matsuda Y H, Nojiri H, Kortz U, Hussain F, Stowe A C, Ramsey C and Dalal N S 2006 Phys. Rev. Lett. 96 107202 |
[24] | Stowe A C, Nellutla S, Dalal N S and Kortz U 2004 Eur. J. Inorg. Chem. 2004 3792 |
[25] | Choi K Y, Dalal N S, Reyes A P, Kuhns P L, Matsuda Y H, Nojiri H, Mal S S and Kortz U 2008 Phys. Rev. B 77 024406 |
[26] | Islam M F, Nossa J F, Canali C M and Pederson M 2010 Phys. Rev. B 82 155446 |
[27] | Bogani L and Wernsdorfer W 2008 Nat. Mater. 7 179 |
[28] | Leuenberger M N and Loss D 2001 Nature 410 789 |
[29] | Zhou B, Tao R B, Shen S Q and Liang J Q 2002 Phys. Rev. A 66 010301 |
[30] | Meier F, Levy J and Loss D 2003 Phys. Rev. B 68 134417 |
[31] | Troiani F, Ghirri A, Affronte M, Carretta S, Santini P, Amoretti G, Piligkos S, Timco G and Winpenny R E P 2005 Phys. Rev. Lett. 94 207208 |
[32] | Lehmann J, Gaita-Ariño A, Coronado E and Loss D 2007 Nat. Nanotech. 2 312 |
[33] | Kortz U, Al-Kassem N K, Savelieff M G, Al Kadi N A and Sadakane M 2001 Inorg. Chem. 40 4742 |
[34] | Trif M, Troiani F, Stepanenko D and Loss D 2008 Phys. Rev. Lett. 101 217201 |
[35] | Hou J M, Du L, Ding J Y and Zhang W X 2010 Chin. Phys. B 19 110313 |
[36] | Li J Q, Chen Z and Zhou B 2013 Acta Phys. Sin. 62 190302 (in Chinese) |
[37] | Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022 |
[38] | Wootters W K 1998 Phys. Rev. Lett. 80 2245 |
[39] | Endrejat J and Büttner H 2005 Phys. Rev. A 71 012305 |
[1] | Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Unified entropy entanglement with tighter constraints on multipartite systems[J]. 中国物理B, 2023, 32(3): 30304-030304. |
[2] | Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis[J]. 中国物理B, 2023, 32(2): 20506-020506. |
[3] | Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Transformation relation between coherence and entanglement for two-qubit states[J]. 中国物理B, 2023, 32(1): 10304-010304. |
[4] | Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Measurement-device-independent one-step quantum secure direct communication[J]. 中国物理B, 2022, 31(12): 120303-120303. |
[5] | Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides[J]. 中国物理B, 2022, 31(12): 120305-120305. |
[6] | Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Quantum correlation and entropic uncertainty in a quantum-dot system[J]. 中国物理B, 2022, 31(10): 100303-100303. |
[7] | Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Measurement-device-independent quantum secret sharing with hyper-encoding[J]. 中国物理B, 2022, 31(10): 100302-100302. |
[8] | Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Probabilistic quantum teleportation of shared quantum secret[J]. 中国物理B, 2022, 31(9): 90303-090303. |
[9] | Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Steering quantum nonlocalities of quantum dot system suffering from decoherence[J]. 中国物理B, 2022, 31(9): 90302-090302. |
[10] | Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Robustness of two-qubit and three-qubit states in correlated quantum channels[J]. 中国物理B, 2022, 31(7): 70302-070302. |
[11] | I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems[J]. 中国物理B, 2022, 31(6): 60301-060301. |
[12] | Bichen Che(车碧琛), Zhao Dou(窦钊), Xiubo Chen(陈秀波), Yu Yang(杨榆), Jian Li(李剑), and Yixian Yang(杨义先). Constructing the three-qudit unextendible product bases with strong nonlocality[J]. 中国物理B, 2022, 31(6): 60302-060302. |
[13] | Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities[J]. 中国物理B, 2022, 31(5): 50303-050303. |
[14] | Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state[J]. 中国物理B, 2022, 31(5): 50301-050301. |
[15] | Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs[J]. 中国物理B, 2022, 31(4): 40308-040308. |
|