中国物理B ›› 2011, Vol. 20 ›› Issue (7): 70502-070502.doi: 10.1088/1674-1056/20/7/070502
Ju H. Park1, J.H. Koo2, S.C. Won2, D.H. Ji3
D.H. Jia), J.H. Koob), S.C. Won b), and Ju H. Parkc)†
摘要: We consider an $\mathcal{H}_{\infty}$ synchronization problem in nonlinear Bloch systems. Based on Lyapunov stability theory and linear matrix inequality formulation, a dynamic feedback controller is designed to guarantee asymptotic stability of the master-slave synchronization. Moreover, this controller reduces the effect of an external disturbance to the $\mathcal{H}_{\infty}$ norm constraint. A numerical example is given to validate the proposed synchronization scheme.
中图分类号: (Control of chaos, applications of chaos)