中国物理B ›› 2011, Vol. 20 ›› Issue (5): 50511-050511.doi: 10.1088/1674-1056/20/5/050511
马铁东1, 浮洁2
收稿日期:
2010-06-01
修回日期:
2010-12-30
出版日期:
2011-05-15
发布日期:
2011-05-15
基金资助:
Ma Tie-Dong (马铁东)a, Fu Jie (浮洁)b
Received:
2010-06-01
Revised:
2010-12-30
Online:
2011-05-15
Published:
2011-05-15
Supported by:
摘要: This paper proposes a nonlinear feedback control method to realize global exponential synchronization with channel time-delay between the Lü system and Chen system, which are regarded as the drive system and the response system respectively. Some effective observers are produced to identify the unknown parameters of the Lü system. Based on the Lyapunov stability theory and linear matrix inequality technique, some sufficient conditions of global exponential synchronization of the two chaotic systems are derived. Simulation results show the effectiveness and feasibility of the proposed controller.
中图分类号: (Synchronization; coupled oscillators)
马铁东, 浮洁. Global exponential synchronization between Lü system and Chen system with unknown parameters and channel time-delay[J]. 中国物理B, 2011, 20(5): 50511-050511.
Ma Tie-Dong (马铁东), Fu Jie (浮洁). Global exponential synchronization between Lü system and Chen system with unknown parameters and channel time-delay[J]. Chin. Phys. B, 2011, 20(5): 50511-050511.
[1] | Boccaletti S, Kurths J, Osipov G, Valladares D L and Zhou C S 2002 Phys. Rep. 366 1 |
[2] | Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821 |
[3] | Ma T D and Fu J 2011 Neurocomputing 74 857 |
[4] | Ma T D, Zhang H G and Fu J 2008 Chin. Phys. B 17 4407 |
[5] | Meng J and Wang X Y 2008 Chaos 18 023108 |
[6] | Wang X Y and Zhang N 2010 Chin. Phys. B 19 090504 |
[7] | Lin D, Wang X Y, Nian F Z and Zhang Y L 2010 Neurocomputing 73 2873 |
[8] | Lin C M, Peng Y F and Lin M H 2009 Chaos, Solitons and Fractals 42 981 |
[9] | Lddotmathrmu L, Zhang Q L and Guo Z A 2008 Chin. Phys. B 17 498 |
[10] | Liu D and Yan X M 2009 Acta Phys. Sin. 58 3747 (in Chinese) |
[11] | Lin D and Wang X Y 2010 Fuzzy Sets Syst. 161 2066 |
[12] | Kong C C and Chen S H 2009 Chin. Phys. B 18 91 |
[13] | Zhang H G, Huang W, Wang Z L and Chai T Y 2006 Phys. Lett. A 350 363 |
[14] | Zhang H G, Xie Y H, Wang Z L and Zheng C D 2007 IEEE Trans. Neural Netw. 18 1841 |
[15] | Nian F Z and Wang X Y 2010 Int. J. Mod. Phys. C 21 457 |
[16] | Wei W, Li D H and Wang J 2010 Chin. Phys. B 19 040507 |
[17] | Ma T D, Zhang H G and Wang Z L 2007 Acta Phys. Sin. 56 3796 (in Chinese) |
[18] | Zhang H G, Ma T D, Fu J and Tong S C 2009 Chin. Phys. B 18 3742 |
[19] | Guo L X, Hu M F and Xu Z Y 2010 Chin. Phys. B 19 020512 |
[20] | Zhang H G, Ma T D, Yu W and Fu J 2008 Chin. Phys. B 17 3616 |
[21] | Zhang H G, Ma T D, Fu J and Tong S C 2009 Chin. Phys. B 18 3751 |
[22] | Zhang H G, Ma T D, Huang G B and Wang Z L 2010 IEEE Trans. Syst. Man Cybern. B 40 831 |
[23] | Ma T D, Fu J and Sun Y 2010 Chin. Phys. B 19 090502 |
[24] | Nian F Z, Wang X Y, Niu Y Z and Lin D 2010 Appl. Math. Comput. 217 2481 |
[25] | Tang R A, Liu Y L and Xue J K 2009 Phys. Lett. A 373 1449 |
[26] | Hu J B, Han Y and Zhao L D 2009 Acta Phys. Sin. 58 1441 (in Chinese) |
[27] | Cai N, Jing Y W and Zhang S Y 2009 Acta Phys. Sin. 58 802 (in Chinese) |
[28] | Yang D S, Zhang H G, Li A P and Meng Z Y 2007 Acta Phys. Sin. 56 3121 (in Chinese) |
[29] | Zhang H G, Zhao Y, Yu W and Yang D S 2008 Chin. Phys. B 17 4056 |
[30] | Huang H, Feng G and Cao J D 2009 Nonlinear Dyn. 57 441 |
[31] | Chopra N and Spong M W 2009 IEEE Trans. Autom. Control. 54 353 |
[32] | Karimi H R and Gao H J 2010 IEEE Trans. Syst. Man Cybern. B 40 173 |
[33] | Jiang G P, Zheng W X and Chen G R 2004 Chaos, Solitons and Fractals 20 267 |
[34] | L"u J H and Chen G R 2002 Int. J. Bifur. Chaos 12 659 |
[35] | Chen G R and Ueta T 1999 Int. J. Bifur. Chaos 9 1465 |
[36] | L"u J H and Lu J A 2003 Chaos, Solitons and Fractals 17 127 |
[37] | Dawson D M, Qu Z and Carroll J C 1992 Syst. Control Lett. 18 217 endfootnotesize |
[1] | Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Influence of coupling asymmetry on signal amplification in a three-node motif[J]. 中国物理B, 2023, 32(1): 10504-010504. |
[2] | Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application[J]. 中国物理B, 2022, 31(11): 110501-110501. |
[3] | Yun-Xu Ma(马云旭), Jia-Ning Wang(王佳宁), Zhao-Zhuo Zeng(曾钊卓), Ying-Yue Yuan(袁映月), Jin-Xia Yang(杨金霞), Hui-Bo Liu(刘慧博), Sen-Fu Zhang(张森富), Jian-Bo Wang(王建波), Chen-Dong Jin(金晨东), and Qing-Fang Liu(刘青芳). Spin transfer nano-oscillator based on synthetic antiferromagnetic skyrmion pair assisted by perpendicular fixed magnetic field[J]. 中国物理B, 2022, 31(10): 100501-100501. |
[4] | Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control[J]. 中国物理B, 2022, 31(10): 100504-100504. |
[5] | Tao Li(李涛), Lin Yan(严霖), and Zhigang Zheng(郑志刚). Improved functional-weight approach to oscillatory patterns in excitable networks[J]. 中国物理B, 2022, 31(9): 90502-090502. |
[6] | Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Power-law statistics of synchronous transition in inhibitory neuronal networks[J]. 中国物理B, 2022, 31(8): 80505-080505. |
[7] | Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Synchronization in multilayer networks through different coupling mechanisms[J]. 中国物理B, 2022, 31(4): 48901-048901. |
[8] | Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Robust H∞ state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks[J]. 中国物理B, 2022, 31(2): 20503-020503. |
[9] | Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Explosive synchronization: From synthetic to real-world networks[J]. 中国物理B, 2022, 31(2): 20504-020504. |
[10] | Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex[J]. 中国物理B, 2022, 31(2): 28901-028901. |
[11] | Dong-Jie Qian(钱冬杰). Explosive synchronization in a mobile network in the presence of a positive feedback mechanism[J]. 中国物理B, 2022, 31(1): 10503-010503. |
[12] | Yan-Liang Jin(金彦亮), Run-Zhu Guo(郭润珠), Xiao-Qi Yu(于晓琪), and Li-Quan Shen(沈礼权). Explosive synchronization of multi-layer complex networks based on inter-layer star network connection[J]. 中国物理B, 2021, 30(12): 120505-120505. |
[13] | Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay[J]. 中国物理B, 2021, 30(12): 120503-120503. |
[14] | Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control[J]. 中国物理B, 2021, 30(12): 120512-120512. |
[15] | Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Adaptive synchronization of chaotic systems with less measurement and actuation[J]. 中国物理B, 2021, 30(10): 100503-100503. |
|