中国物理B ›› 2010, Vol. 19 ›› Issue (11): 110303-110307.doi: 10.1088/1674-1056/19/11/110303
康国栋, 方卯发, 欧阳锡城, 邓小娟
收稿日期:
2009-08-01
修回日期:
2010-06-07
出版日期:
2010-11-15
发布日期:
2010-11-15
基金资助:
Kang Guo-Dong(康国栋), Fang Mao-Fa(方卯发)†, Ouyang Xi-Cheng(欧阳锡城), and Deng Xiao-Juan(邓小娟)
Received:
2009-08-01
Revised:
2010-06-07
Online:
2010-11-15
Published:
2010-11-15
Supported by:
摘要: Considering two identical two-level atoms interacting with a single-model dissipative coherent cavity field without rotating wave approximation, we explore the entanglement dynamics of the two atoms prepared in different states using concurrence. Interestingly, our results show that the entanglement between the two atoms that initially disentangled will come up to a large constant rapidly, and then keeps steady in the following time or always has its maximum when prepared in some special Bell states. The model considered in this study is a good candidate for quantum information processing especially for quantum computation as steady high-degree atomic entanglement resource obtained in dissipative cavity.
中图分类号: (Entanglement and quantum nonlocality)
康国栋, 方卯发, 欧阳锡城, 邓小娟. Entanglement of two atoms interacting with a dissipative coherent cavity field without rotating wave approximation[J]. 中国物理B, 2010, 19(11): 110303-110307.
Kang Guo-Dong(康国栋), Fang Mao-Fa(方卯发), Ouyang Xi-Cheng(欧阳锡城), and Deng Xiao-Juan(邓小娟). Entanglement of two atoms interacting with a dissipative coherent cavity field without rotating wave approximation[J]. Chin. Phys. B, 2010, 19(11): 110303-110307.
[1] | Nilesen M A and Chang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) |
[2] | Bennet C H, Brassard G and Vepeau C 1993 Phys. Rev. Lett. 70 1895 |
[3] | Bennet C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881 |
[4] | Ekert A 1991 Phys. Rev. Lett. 67 661 |
[5] | Giovannetti V, Lloyd S and Maccone L 2001 Nature bf 412 417 |
[6] | Giovannetti V, Lloyd S and Maccone L 2002 Phys. Rev. A 65 022309 |
[7] | Zeng K and Fang M F 2005 Chin. Phys. 14 2009 |
[8] | Jin L J and Fang M F 2006 Chin. Phys. bf 15 2012 |
[9] | Jiang C L, Fang M F and Zheng X J 2006 Chin. Phys. 15 2953 |
[10] | Song J and Cao Z L 2005 Acta Phys. Sin. 54 696 (in Chinese) |
[11] | Wu Y, Payne M G, Hagley E W and Deng L 2004 Phys. Rev. A 70 063812 |
[12] | Yuan C H, Ou Y C and Zhang Z M 2006 Chin. Phys. bf 15 1793 |
[13] | Tessier T E, Deutsch I H, Delgado A and Fuentes-Guridi I 2003 Phys. Rev. A 68 062316 |
[14] | Fujii K, Higashida K, Kato R, Suzuki T and Wada Y 2004 quant-Ph/0404034 |
[15] | Cai J F 2004 quant-ph/0405176 |
[16] | Wang X Y, Du S D and Chen X S 2006 J. Phys. B 39 3805 |
[17] | Retzker A, Solano E and Reznik B 2007 Phys. Rev. A 75 022312 |
[18] | L'opez C E, Christ H, Retamal J C and Solano E 2007 Phys. Rev. A 75 033818 |
[19] | L'opez C E, Lastra F, Romero G and Retamal J C 2007 Phys. Rev. A 75 022107 |
[20] | Chen L, Shao X Q and Zhang S 2009 Chin. Phys. B 18 888 |
[21] | Guo L and Liang X T 2009 Acta Phys. Sin. 58 50 (in Chinese) |
[22] | Zhang G F and Bu J J 2010 Acta Phys. Sin. 59 1462 (in Chinese) |
[23] | Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281 |
[24] | Irish E K and Schwab K 2003 Phys. Rev. B 68 155311 |
[25] | Wallraf A, Schuster D I , Blais A, Frunzio L, Majer J, Devoret M H, Girvin S M and Schoelkopf R J 2004 Nature 431 162 |
[26] | Chiorescu I, Bertet P, Semba K, Nakamura Y, Harmans C J P M and Mooil J E 2004 Nature 431 159 |
[27] | Meiser D and Meystre P 2006 quntum-ph/ 0605020 |
[28] | Li G X and Peng J S1992 Acta Phys. Sin. bf 41 766 (in Chinese) |
[29] | Peng J S and Li G X 1992 Phys. Rev. A 45 3289 |
[30] | Peng J S and Li G X 1991 Acta Phys. Sin. 40 1042 (in Chinese) |
[31] | Cui H P, Zou J, Li J G and Shao B 2006 J. Phys. B 40 S143 |
[32] | Lougovski P, Casagrande F, Lulli A and Solano E 2007 Phys. Rev. A 76 033802 |
[33] | Lougovski P, Casagrande F, Lulli A, Englert B G, Solano E and Walther H 2004 Phys. Rev. A 69 023812 |
[34] | Cahill K E and Glauber R J 1969 Phys. Rev. 177 1882 |
[35] | Barnett S M and Radmore P M 1997 Methods in Theoretical Quantum Optics (Oxford: Clarendon press) |
[36] | Beige A, Bose S, Braun D, Huelga S F and Knight P L 2002 J. Mod. Opt. 47 2583 |
[37] | Cabrillo C, Cirac J I, Garcia-Fernandez P and Zoller P 1999 Phys. Rev. A 59 1025 |
[38] | Fang M F and Zhu S Y 2006 Physica A 369 475 |
[39] | Plenio B M and Huega S F 2002 Phys. Rev. Lett. bf 88 197901 |
[1] | Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Unified entropy entanglement with tighter constraints on multipartite systems[J]. 中国物理B, 2023, 32(3): 30304-030304. |
[2] | Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis[J]. 中国物理B, 2023, 32(2): 20506-020506. |
[3] | Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Transformation relation between coherence and entanglement for two-qubit states[J]. 中国物理B, 2023, 32(1): 10304-010304. |
[4] | Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Measurement-device-independent one-step quantum secure direct communication[J]. 中国物理B, 2022, 31(12): 120303-120303. |
[5] | Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides[J]. 中国物理B, 2022, 31(12): 120305-120305. |
[6] | Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Quantum correlation and entropic uncertainty in a quantum-dot system[J]. 中国物理B, 2022, 31(10): 100303-100303. |
[7] | Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Measurement-device-independent quantum secret sharing with hyper-encoding[J]. 中国物理B, 2022, 31(10): 100302-100302. |
[8] | Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Probabilistic quantum teleportation of shared quantum secret[J]. 中国物理B, 2022, 31(9): 90303-090303. |
[9] | Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Steering quantum nonlocalities of quantum dot system suffering from decoherence[J]. 中国物理B, 2022, 31(9): 90302-090302. |
[10] | Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Robustness of two-qubit and three-qubit states in correlated quantum channels[J]. 中国物理B, 2022, 31(7): 70302-070302. |
[11] | I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems[J]. 中国物理B, 2022, 31(6): 60301-060301. |
[12] | Bichen Che(车碧琛), Zhao Dou(窦钊), Xiubo Chen(陈秀波), Yu Yang(杨榆), Jian Li(李剑), and Yixian Yang(杨义先). Constructing the three-qudit unextendible product bases with strong nonlocality[J]. 中国物理B, 2022, 31(6): 60302-060302. |
[13] | Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state[J]. 中国物理B, 2022, 31(5): 50301-050301. |
[14] | Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities[J]. 中国物理B, 2022, 31(5): 50303-050303. |
[15] | Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs[J]. 中国物理B, 2022, 31(4): 40308-040308. |
|