中国物理B ›› 2009, Vol. 18 ›› Issue (4): 1306-1311.doi: 10.1088/1674-1056/18/4/002
黄炜, 姜锐, 胡茂彬, 吴清松
Huang Wei(黄炜), Jiang Rui(姜锐), Hu Mao-Bin(胡茂彬), and Wu Qing-Song(吴清松)
摘要: We study the effect of incubation period on epidemic spreading in the Barabasi--Albert scale-free network and the Watts--Strogatz small world network by using a Suspectable-Incubated-Infected-Suspectable model. Our analytical investigations show that the epidemic threshold is independent of incubation period in both networks, which is verified by our large-scale simulation results. We also investigate the effect of incubation period on the epidemic dynamics in a supercritical regime. It is found that with the increase of incubation period Ω , a damped oscillation evolution of ρT(the ratio of persons in incubated state) appears and the time needed to reach a saturation value increases. Moreover, the steady value of ρT increases and approaches to an asymptotic constant with the value of {\it\Omega} increasing. As a result, the infected ratio ρI decreases with the increase of Ω according to a power law.
中图分类号: (Networks and genealogical trees)