Robust two-gap strong coupling superconductivity associated with low-lying phonon modes in pressurized Nb5Ir3O superconductors
Wang Bosen1, 2, 4, †, Zhang Yaoqing3, Xu Shuxiang1, Ishigaki Kento2, Matsubayashi Kazuyuki2, Cheng Jin-Guang1, 4, Hosono Hideo3, Uwatoko Yoshiya2
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581, Japan
Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503, Japan
Songshan Lake Materials Laboratory, Dongguan 523808, China

 

† Corresponding author. E-mail: bswang@iphy.ac.cn

Abstract

We report robust superconducting state and gap symmetry of Nb5Ir3O via electrical transport and specific heat measurements. The analysis of specific heat manifests that Nb5Ir3O is a strongly coupled superconductor with and double s-wave superconducting gaps of and accounting for 90% and 10%, respectively. The vs. T plot shows a broad peak at ∼23 K, indicating phonon softening and the appearance of low-lying phonon mode associated with the interstitial oxygen. This behavior explains the monotonic increase of Tc in by strengthening the electron–phonon coupling and enlarging the density of states at Fermi level. The Hall coefficient is temperature independent below 200 K, and changes its sign from positive to negative above 250 K, suggesting that carrier is across the hole- to electron-dominant regions and the multi-band electronic structures. On warming, the resistivity shows a gradual crossover from - to -dependence at a critical temperature , and a broad peak at a temperature Tp. The reduced Tc under pressure is linearly correlated with lattice parameters c/a ratio and Tp, suggesting the important phonon contributions in Nb5Ir3O as a phonon-medicated superconductor. Possible physical mechanisms are proposed.

Reference
[1] Keppens V Mandrus D Sales B C Chakoumakos B C Dai P Coldea R Maple M B Gajewski D A Freeman E J Bennington S 1998 Nature 395 876
[2] Gunnarson O 1997 Rev. Mod. Phys. 69 575
[3] Bauer E Grysiv A Chen X Q 2007 Phys. Rev. Lett. 99 217001
[4] Hirai D Ali M N Cava R J 2013 J. Phys. Soc. Jpn. 82 124701
[5] Hiroi Z Yamaura J I Hattori K 2012 J. Phys. Soc. Jpn. 81 011012
[6] Testardi L R 1975 Rev. Mod. Phys. 47 637
[7] Kudo K Takasuga M Okamoto Y Hiroi Z Nohara M 2012 Phys. Rev. Lett. 109 097002
[8] Grosche F M Yuan H Q Cabrera W C Paschen S Langhammer C Kromer F Sparn G Baenitz M Grin Y Steglich F 2001 Phys. Rev. Lett. 87 247003
[9] Leithe J A Schnelle W Rosner H Senthilkumaran N Rabis A Baenitz M Gippius A Morozova E Mydosh J A Grin Y 2003 Phys. Rev. Lett. 91 037208
[10] Qi Y P Lei H C Guo J G Shi W J Yan B H Felser C Hosono H 2017 J. Am. Chem. Soc. 139 8106
[11] Sales B C Mandrus D Williams R K 1996 Science 272 1325
[12] Miyakawa M Kim S W Hirano M Kohama Y Kawaji H Atake T lkegami H Kono K Hosono H 2007 J. Am. Chem. Soc. 129 7270
[13] Hosono H 2015 Phil. Trans. R. Soc. A 373 20140450
[14] Crystal Structure Database at https://icsd.fiz-karlsruhe.de/accessed [201310-10]
[15] Lv B Zhu X Y Lorenz B Wei F Y Xue Y Y Yin Z P Kotliar G Chu C W 2013 Phys. Rev. B 88 134520
[16] Zhang Y Q Wang B S Xiao Z W Lu Y F Kamiya T Uwatoko Y Kageyana H Hosono H 2017 NPG Quan. Mater. 2 45
[17] Xie W W Luo H X Phelan B F Cava R J 2015 J. Mater. Chem. C 3 8235
[18] Li S Liu X Y An V Lv B 2018 New J. Phys. 20 13009
[19] Bortolozo A D Dos Santos C A M Jardim R F Ritter C Devishvili A Rotter M Gandra F G Machado A J S 2012 J. App. Phys. 111 123912
[20] Koch C C Scarbrough J O 1971 Phys. Rev. B 3 742
[21] Horyń R Folcik K L Iliev N 1978 J. Less Common Met. 57 69
[22] Mori N 2004 High Press. Res. 24 225
[23] Golovashkin A I Gudenko A V Tskhovrebov A M Zherikhina L N Norton M L 1994 Phys. C. 235�?40 1481
[24] Gofryk K Kaczorowski D Plackowski T Leithe J A Grin Y 2005 Phys. Rev. B 72 094409
[25] Kitawaki R Terasaki I 2002 J. Phys.: Condens Matter. 14 12495
[26] McMillan W L 1968 Phys. Rev. B 167 331
[27] Bouquet F Wang Y Sheikin I Plackowski T Junod A Lee S Tajima S 2002 Phys. Rev. Lett. 89 257001
[28] Bardeen J Cooper L N Schrieffer J R 1957 Phys. Rev. 108 1175
[29] Johari G P 2011 Phys. Rev. Lett. 106 225501
[30] Cooper R A Wang Y Vignolle B Lipscomne O J Hayden S M Tanabe Y Adachi T Koike Y Nohara M Takagi H Proust C Hussey N E 2009 Science 323 603
[31] Subedi A Zhang L J Singh D J Du M H 2008 Phys. Rev. B 78 134514
[32] Forthaus M K Sengupta K Heyer O Christensen N E Svane A Syassen K Khomskii D I Lorenz T Abd-Elmeguid M M 2010 Phys. Rev. Lett. 105 157001