Nonlinear coherent perfect photon absorber in asymmetrical atom–nanowires coupling system
Xia Xiuwen1, 2, †, Zhang Xinqin1, Xu Jingping2, Cheng Mutian3, Yang Yaping2
Institute of Atomic and Molecular Physics and Functional Materials, School of Mathematics and Physics, Jinggangshan University, Ji’an 343009, China
MOE Key Laboratory of Advanced Micro-Structure Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
School of Electrical Engineering & Information, Anhui University of Technology, Maanshan 243002, China

 

† Corresponding author. E-mail: jgsuxxw@126.com

Project supported by the National Natural Science Foundation of China (Grant Nos. 11864018 and 11574229), Scientific Research Foundation of the Education Department of Jiangxi Province of China (Grant No. GJJ170645), and Doctor Startup Fund of the Natural Science of Jinggangshan University, China (Grant No. JZB16003).

Abstract

Coherent perfect absorption provides a method of light-controlling-light and has practical applications in optical communications. Recently, a cavity-based nonlinear perfect photon absorption extends the coherent perfect absorber (CPA) beyond the linear regime. As nanowire-based system is a more competitive candidate for full-optical device, we introduce a nonlinear CPA in the single two-level atom–nanowires coupling system in this work. Nonlinear input–output relations are derived analytically, and three contributions of atomic saturation nonlinearity are explicit. The consociation of optical nonlinearity and destructive interference makes it feasible to fabricate a nonlinear monoatomic CPA. Our results also indicate that a nonlinear system may work linearly even when the incoming lights are not weak any more. Our findings show promising applications in full-optical devices.

Reference
[1] Gmachl C F 2010 Nature 467 37
[2] Chong Y D Ge L Cao H Stone A D 2010 Phys. Rev. Lett. 105 053901
[3] Kotlicki O Scheuer J 2014 Opt. Lett. 39 6624
[4] Longhi S Della Valle G 2012 Phys. Rev. 85 053838
[5] Wan W Chong Y Ge L Noh H Stone A D Cao H 2011 Science 331 889
[6] Sun Y Tan W Li H Q Li J Chen H 2014 Phys. Rev. Lett. 112 143903
[7] Xiong H Si L G Yang X Wu Y 2015 Appl. Phys. Lett. 107 091116
[8] Xia X Xu J Yang Y 2014 J. Opt. Soc. Am. 31 2175
[9] Xia X Xu J Yang Y 2014 Phys. Rev. 90 043857
[10] Zheng A Zhang G Chen H Mei T Liu J 2017 Sci. Rep. 7 14001
[11] Agarwal G S Di K Wang L Zhu Y 2016 Phys. Rev. 93 063805
[12] Shen J T Fan S 2005 Opt. Lett. 30 2001
[13] Waks E Vuckovic J 2006 Phys. Rev. Lett. 96 153601
[14] Shen J T Fan S 2009 Phys. Rev. 79 023837
[15] Shen J T Fan S 2009 Phys. Rev. 79 023838
[16] Shen Y Bradford M Shen J T 2011 Phys. Rev. Lett. 107 173902
[17] Xia X Zhang X Xu J Cheng M Yang Y 2017 J. Appl. Phys. 122 023102
[18] Zhang X Q Xia X W Xu J P Yang Y P 2017 Chin. Phys. 26 54208
[19] Aroua W AbdelMalek F Kamli A A 2014 Opt. Commun. 332 25
[20] Calajó G Ciccarello F Chang D Rabl P 2016 Phys. Rev. 93 033833
[21] Kien F L Rauschenbeutel A 2016 Phys. Rev. 93 013849
[22] Li X Xie L Wei L F 2015 Phys. Rev. 92 063840
[23] Chang D E Sorensen A S Demler E A Lukin M D 2007 Nat. Phys. 3 807
[24] Chen Y Wubs M Mørk J Koenderink A F 2011 New J. Phys. 13 103010
[25] Kim N C Ko M C Choe C I 2015 Plasmonics 10 1447
[26] Tiecke T G Thompson J D de Leon N P Liu L R Vuletic V Lukin M D 2014 Nature 508 241
[27] Liu Z Z Chen Y Y Yuan J Y Wan R G 2017 Chin. Phys. 26 124209
[28] Xue Y L Zhang K Feng B H Li Z Y 2016 Chin. Phys. Lett. 33 074204
[29] Shi J Fang X Rogers E T F Plum E MacDonald K F Zheludev N I 2014 Opt. Express 22 21051
[30] Kita S Takata K Ono M Nozaki K Kuramochi E Takeda K Notomi M 2017 APL Photonics 2 046104
[31] Fang X MacDonald K F Zheludev N I 2015 Light Sci. Appl. 4 e292