Charge noise acting on graphene double quantum dots in circuit quantum electrodynamics architecture
Li Yan, Li Shu-Xiao, Li Hai-Ou, Deng Guang-Wei, Cao Gang, Xiao Ming, Guo Guo-Ping
CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China

 

† Corresponding author. E-mail: haiouli@ustc.edu.cn gpguo@ustc.edu.cn

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301700), the National Natural Science Foundation of China (Grant Nos. 61674132, 11674300, 11575172, and 11625419), and the Anhui Initiative in Quantum information Technologies, China (Grant No. AHY080000). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Abstract

We investigate the dephasing mechanisms induced by the charge noise and microwave heating effect acting on a graphene double quantum dot (DQD) capacitively coupled to a microwave resonator. The charge noise is obtained from DC transport current, and its contribution to dephasing is simultaneously determined by the amplitude response of the microwave resonator. A lowfrequency 1/f-type noise is demonstrated to be the dominant factor of the dephasing of graphene DQD. Furthermore, when the applied microwave power is larger than −90 dBm, the dephasing rate of graphene DQD increases rapidly with the increase of microwave power, and fluctuates slightly with the applied microwave power smaller than −90 dBm. Our results can be applied to suppress the impeditive influence on the dephasing of graphene-based devices associated with microwave input in the perspective investigations.

Reference
[1] Xiang Z L Ashhab S You J Q Nori F 2013 Rev. Mod. Phys. 85 623
[2] Stockklauser A Scarlino P Koski J V Gasparinetti S Andersen C K Reichl C Wegscheider W Ihn T Ensslin K Wallraff A 2017 Phys. Rev. X 7 011030
[3] Mi X Cady J V Zajac D M Deelman P W Petta J R 2017 Science 355 156
[4] Bruhat L E Cubaynes T Viennot J J Dartiailh M C Desjardins M M Cottet A Kontos T 2016 arXiv:161205214
[5] Mi X Benito M Putz S Zajac D M Taylor J M Burkard G Petta J R 2018 Nature 555 599
[6] Samkharadze N Zheng G Kalhor N Brousse D Sammak A Mendes U C Blais A Scappucci G Vandersypen L M K 2018 Science 359 1123
[7] Landig A J Koski J V Scarlino P Mendes U C Blais A Reichl C Wegscheider W Wallraff A Ensslin K Ihn T 2017 arXiv:171101932
[8] Han T Y Deng G W Wei W Guo G P 2016 Chin. Phys. Lett. 33 047301
[9] Delbecq M R Bruhat L E Viennot J J Datta S Cottet A Kontos T 2013 Nat. Commun. 4 1400
[10] Deng G W Wei D Li S X Johansson J R Kong W C Li H O Cao G Xiao M Guo G C Nori F Jiang H W Guo G P 2015 Nano Lett. 15 6620
[11] Liu B Y Cui W Dai H Y Chen X Zhang M 2017 Chin. Phys. 26 090303
[12] Zhu Z C Tu T Guo G P 2011 Chin. Phys. Lett. 28 040301
[13] Hu X D Liu Y X Nori F 2012 Phys. Rev. 86 035314
[14] Jin P Q Marthaler M Shnirman A Schön G 2012 Phys. Rev. Lett. 108 190506
[15] Deng G W Wei D Johansson J R Zhang M L Li S X Li H O Cao G Xiao M Tu T Guo G C Jiang H W Nori F Guo G P 2015 Phys. Rev. Lett. 115 126804
[16] Volk C Neumann C Kazarski S Fringes S Engels S Haupt F Muller A Stampfer C 2013 Nat. Commun. 4 1753
[17] Zhang K Li M M Liu Q Yu H F Yu Y 2017 Chin. Phys. 26 078501
[18] Zhang X Li H O Wang K Cao C Xiao M Guo G P 2018 Chin. Phys. 27 020305
[19] Su F F Liu W Y Xu H K Deng H Li Z Y Tian Y Zhu X B Zheng D N Lv L Zhao S P 2017 Chin. Phys. 26 060308
[20] Huang P H Hu X D 2014 Phys. Rev. 89 195302
[21] Petersson K D Petta J R Lu H Gossard A C 2010 Phys. Rev. Lett. 105 246804
[22] Dupont-Ferrier E Roche B Voisin B Jehl X Wacquez R Vinet M Sanquer M Franceschi S D 2013 Phys. Rev. Lett. 110 136802
[23] Dial O E Shulman M D Harvey S P Bluhm H Umansky V Yacoby A 2013 Phys. Rev. Lett. 110 146804
[24] Paladino E Galperin Y M Falci G Altshuler B L 2014 Rev. Mod. Phys. 86 361
[25] Adam B Daniel K Dimitrie C 2014 Appl. Phys. Lett. 105 192102
[26] Yu S X Lai C H Oh C H 2011 Acta Phys. Sin. 60 050304 (in Chinese)
[27] Basset J Stockklauser A Jarausch D D Frey T Reichl C Wegscheider W Wallraff A Ensslin K Ihn T 2014 Appl. Phys. Lett. 105 063105
[28] Xu G Y Torres C M Song E B Tang J S Bai J W Duan X F Zhang Y G Wang K L 2010 Nano Lett. 10 4590
[29] Cheng Z G Li Q Li Z J Zhou Q Y Fang Y 2010 Nano Lett. 10 1864
[30] Song X X Li H O You J Han T Y Cao G Tu T Xiao M Guo G C Jiang H W Guo G P 2015 Sci. Rep. 5 8142
[31] Zhang M L Deng G W Li S X Li H O Cao G Tu T Xiao M Guo G C Jiang H W Siddiqi I Guo G P 2014 Appl. Phys. Lett. 104 083511
[32] Li Y Li S X Gao F Li H O Xu G Wang K Liu D Cao G Xiao M Wang T Zhang J J Guo G C Guo G P 2018 Nano Lett. 18 2091
[33] Pozar D M 2004 Microwave Engineering Wiley
[34] Petersson K D McFaul L W Schroer M D Jung M Taylor J M Houck A A Petta J R 2012 Nature 490 380
[35] Zhou C Wang L Tu T Han T Y Li H O Guo G P 2013 Chin. Phys. Lett. 30 050301
[36] Zhou C Tu T Wang L Li H O Cao G Guo G C Guo G P 2012 Chin. Phys. Lett. 29 117303
[37] Wang L J Cao G Tu T Li H O Zhou C Hao X J Guo G C Guo G P 2011 Chin. Phys. Lett. 28 067301
[38] Tavis M Cummings F W 1968 Phys. Rev. 170 379
[39] Rahi P K Mehra R 2013 Int. J. Sci. Res. Eng. Tech. 2 389
[40] Li H O Cao G Xiao M You J Wei D Tu T Guo G C Jiang H W Guo G P 2014 J. Appl. Phys. 116 174504
[41] Culcer D Hu X D Sarma S D 2009 Appl. Phys. Lett. 95 073102
[42] Dial O Shulman M Harvey S Bluhm H Umansky V Yacoby A 2013 Phys. Rev. Lett. 110 146804
[43] Martin I Galperin Y M 2006 Phys. Rev. 73 180201
[44] Jung S W Fujisawa T Hirayama Y Jeong Y H 2004 Appl. Phys. Lett. 85 768
[45] Viennot J J Delbecq M R Dartiailh M C Cottet A Kontos T 2014 Phys. Rev. 89 165404
[46] Petersson K D Petta J R Lu H Cossard A C 2010 Phys. Rev. Lett. 105 246804
[47] Ithier G Collin E Joyez P Meeson P J Vion D Esteve D Chiarello F Shnirman A Makhlin Y Schriefl J Schoen G 2005 Phys. Rev. 72 134519
[48] Dutta P Horn P M 1981 Rev. Mod. Phys. 53 497
[49] Paladino E Faoro L Falci G Rosario F 2002 Phys. Rev. Lett. 88 228304
[50] Gallagher P Tod K Goldhaber-Gordon D 2010 Phys. Rev. 81 115409
[51] You J Li H O Cao G Deng G W Xiao M Guo G P 2015 Europhys. Lett. 111 17001