Not found Virtual Special Topic — Magnetism and Magnetic Materials
    null

    Default Latest Most Read
    Please wait a minute...
    For selected: Toggle thumbnails
    Critical behavior in the layered organic-inorganic hybrid (CH3NH3)2CuCl4
    Tina Raoufi, Yinina Ma(马怡妮娜), Young Sun(孙阳)
    Chin. Phys. B, 2020, 29 (6): 067503.   DOI: 10.1088/1674-1056/ab892c
    Abstract642)   HTML    PDF (1005KB)(150)      
    The critical properties and the nature of the ferromagnetic-paramagnetic phase transition in the 2D organic-inorganic hybrid (CH3NH3)2CuCl4 single crystal have been investigated by dc magnetization in the vicinity of the magnetic transition. Different techniques were used to estimate the critical exponents near the ferromagnetic-paramagnetic phase transition such as modified Arrott plots, the Kouvel-Fisher method, and the scaling hypothesis. Values of β=0.22, γ=0.82, and δ=4.4 were obtained. These critical exponents are in line with their corresponding values confirmed through the scaling hypothesis as well as the Widom scaling relation, supporting their reliability. It is concluded that this 2D hybrid compound possesses strong ferromagnetic intra-layer exchange interaction as well as weak interlayer ferromagnetic coupling that causes a crossover from 2D to 3D long-range interaction.
    Physical properties and magnetic structure of a layered antiferromagnet PrPd0.82Bi2
    Meng Yang(杨萌), Changjiang Yi(伊长江), Fengfeng Zhu(朱锋锋), Xiao Wang(王霄), Dayu Yan(闫大禹), Shanshan Miao(苗杉杉), Yixi Su(苏夷希), Youguo Shi(石友国)
    Chin. Phys. B, 2020, 29 (6): 067502.   DOI: 10.1088/1674-1056/ab889f
    Abstract498)   HTML    PDF (1392KB)(125)      
    We report the physical properties, crystalline and magnetic structures of singe crystals of a new layered antiferromagnetic (AFM) material PrPd0.82Bi2. The measurements of magnetic properties and heat capacity indicate an AFM phase transition at TN~7 K. A large Sommerfeld coefficient of 329.23 mJ·mol-1·K-2 is estimated based on the heat capacity data, implying a possible heavy-fermion behavior. The magnetic structure of this compound is investigated by a combined study of neutron powder and single-crystal diffraction. It is found that an A-type AFM structure with magnetic propagation wavevector k=(0 0 0) is formed below TN. The Pr3+ magnetic moment is aligned along the crystallographic c-axis with an ordered moment of 1.694(3) μB at 4 K, which is smaller than the effective moment of the free Pr3+ ion of 3.58 μB. PrPd0.82Bi2 can be grown as large as 1 mm×1 cm in area with a layered shape, and is very easy to be cleaved, providing a unique opportunity to study the interplay between magnetism, possible heavy fermions, and superconductivity.
    Role of the spin anisotropy of the interchain interaction in weakly coupled antiferromagnetic Heisenberg chains
    Yuchen Fan(樊宇辰), Rong Yu(俞榕)
    Chin. Phys. B, 2020, 29 (5): 057505.   DOI: 10.1088/1674-1056/ab820b
    Abstract635)   HTML    PDF (448KB)(193)      
    In quasi-one-dimensional (q1D) quantum antiferromagnets, the complicated interplay of intrachain and interchain exchange couplings may give rise to rich phenomena. Motivated by recent progress on field-induced phase transitions in the q1D antiferromagnetic (AFM) compound YbAlO3, we study the phase diagram of spin-1/2 Heisenberg chains with Ising anisotropic interchain couplings under a longitudinal magnetic field via large-scale quantum Monte Carlo simulations, and investigate the role of the spin anisotropy of the interchain coupling on the ground state of the system. We find that the Ising anisotropy of the interchain coupling can significantly enhance the longitudinal spin correlations and drive the system to an incommensurate AFM phase at intermediate magnetic fields, which is understood as a longitudinal spin density wave (LSDW). With increasing field, the ground state changes to a canted AFM order with transverse spin correlations. We further provide a global phase diagram showing how the competition between the LSDW and the canted AFM states is tuned by the Ising anisotropy of the interchain coupling.
    Microstructure and ferromagnetism of heavily Mn doped SiGe thin flims
    Huanming Wang(王焕明), Sen Sun(孙森), Jiayin Xu(徐家胤), Xiaowei Lv(吕晓伟), Yuan Wang(汪渊), Yong Peng(彭勇), Xi Zhang(张析), Gang Xiang(向钢)
    Chin. Phys. B, 2020, 29 (5): 057504.   DOI: 10.1088/1674-1056/ab8219
    Abstract646)   HTML    PDF (3605KB)(247)      
    Heavily Mn-doped SiGe thin films were grown by radio frequency magnetron sputtering and then treated by post-growth thermal annealing. Structural characterizations reveal the coexistence of Mn-diluted SiGe crystals and Mn-rich nanoclusters in the annealed films. Magnetic measurements indicate the ferromagnetic ordering of the annealed samples above room temperature . The data suggest that the ferromagnetism is probably mainly contributed by the Ge-rich nanoclusters and partially contributed by the tensile-strained Mn-diluted SiGe crystals. The results may be useful for room temperature spintronic applications based on group IV semiconductors.
    Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
    Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik
    Chin. Phys. B, 2020, 29 (5): 057506.   DOI: 10.1088/1674-1056/ab889b
    Abstract772)   HTML    PDF (2704KB)(388)      
    We use quantum Monte Carlo simulations to study an S=1/2 spin model with competing multi-spin interactions. We find a quantum phase transition between a columnar valence-bond solid (cVBS) and a Néel antiferromagnet (AFM), as in the scenario of deconfined quantum-critical points, as well as a transition between the AFM and a staggered valence-bond solid (sVBS). By continuously varying a parameter, the sVBS-AFM and AFM-cVBS boundaries merge into a direct sVBS-cVBS transition. Unlike previous models with putative deconfined AFM-cVBS transitions, e.g., the standard J-Q model, in our extended J-Q model with competing cVBS and sVBS inducing terms the transition can be tuned from continuous to first-order. We find the expected emergent U(1) symmetry of the microscopically Z4 symmetric cVBS order parameter when the transition is continuous. In contrast, when the transition changes to first-order, the clock-like Z4 fluctuations are absent and there is no emergent higher symmetry. We argue that the confined spinons in the sVBS phase are fracton-like. We also present results for an SU(3) symmetric model with a similar phase diagram. The new family of models can serve as a useful tool for further investigating open questions related to deconfined quantum criticality and its associated emergent symmetries.
    High pressure synthesis and characterization of the pyrochlore Dy2Pt2O7: A new spin ice material
    Qi Cui(崔琦), Yun-Qi Cai(蔡云麒), Xiang Li(李翔), Zhi-Ling Dun(顿志凌), Pei-Jie Sun(孙培杰), Jian-Shi Zhou(周建十), Hai-Dong Zhou(周海东), Jin-Guang Cheng(程金光)
    Chin. Phys. B, 2020, 29 (4): 047502.   DOI: 10.1088/1674-1056/ab7b58
    Abstract774)   HTML    PDF (776KB)(306)      
    The cubic pyrochlore Dy2Pt2O7 was synthesized under 4 GPa and 1000℃ and its magnetic and thermodynamic properties were characterized by DC and AC magnetic susceptibility and specific heat down to 0.1 K. We found that Dy2Pt2O7 does not form long-range magnetic order, but displays characteristics of canonical spin ice such as Dy2Ti2O7, including (1) a large effective moment 9.64 μB close to the theoretical value and a small positive Curie-Weiss temperature θCW=+0.77 K signaling a dominant ferromagnetic interaction among the Ising spins; (2) a saturation moment ~4.5 μB being half of the total moment due to the local <111> Ising anisotropy; (3) thermally activated spin relaxation behaviors in the low (~1 K) and high (~20 K) temperature regions with different energy barriers and characteristic relaxation time; and most importantly, (4) the presence of a residual entropy close to Pauling's estimation for water ice.
    Visualization of tunnel magnetoresistance effect in single manganite nanowires
    Yang Yu(郁扬), Wenjie Hu(胡雯婕), Qiang Li(李强), Qian Shi(时倩), Yinyan Zhu(朱银燕), Hanxuan Lin(林汉轩), Tian Miao(苗田), Yu Bai(白羽), Yanmei Wang(王艳梅), Wenting Yang(杨文婷), Wenbin Wang(王文彬), Hangwen Guo(郭杭闻), Lifeng Yin(殷立峰), Jian Shen(沈健)
    Chin. Phys. B, 2020, 29 (1): 018501.   DOI: 10.1088/1674-1056/ab5932
    Abstract723)   HTML    PDF (675KB)(205)      
    We reported a study of tunnel magnetoresistance (TMR) effect in single manganite nanowire via the combination of magnetotransport and magnetic force microscopy imaging. TMR value up to 290% has been observed in single (La1-yPry)1-xCaxMnO3 nanowires with varying width. We find that the TMR effect can be explained in the scenario of opening and blockade of conducting channels from inherent magnetic domain evolutions. Our findings provide a new route to fabricate TMR junctions and point towards future improvements in complex oxide-based TMR spintronics.
    Giant topological Hall effect of ferromagnetic kagome metal Fe3Sn2
    Qi Wang(王琦), Qiangwei Yin(殷蔷薇), Hechang Lei(雷和畅)
    Chin. Phys. B, 2020, 29 (1): 017101.   DOI: 10.1088/1674-1056/ab5fbc
    Abstract1044)   HTML    PDF (671KB)(735)      
    We present the experiment observation of a giant topological Hall effect (THE) in a frustrated kagome bilayer magnet Fe3Sn2. The negative topologically Hall resistivity appears when the field is below 1.3 T and it increases with increasing temperature up to 300 K. Its maximum absolute value reaches ~2.01 μΩ·cm at 300 K and 0.76 T. The origins of the observed giant THE can be attributed to the coexistence of the field-induced skyrmion state and the non-collinear spin configuration, possibly related to the magnetic frustration interaction in Fe3Sn2.
    Quaternary antiferromagnetic Ba2BiFeS5 with isolated FeS4 tetrahedra
    Shaohua Wang(王少华), Xiao Zhang(张晓), Hechang Lei(雷和畅)
    Chin. Phys. B, 2019, 28 (8): 087401.   DOI: 10.1088/1674-1056/28/8/087401
    Abstract706)   HTML    PDF (2515KB)(233)      

    We report the detailed physical properties of quaternary compound Ba2BiFeS5 with the key structural ingredient of isolated FeS4 tetrahedra. Magnetization and heat capacity measurements clearly indicate that Ba2BiFeS5 has a paramagnetic to antiferromagnetic transition at about 30 K. The calculated magnetic entropy above ordering temperature is much smaller than theoretical value for high-spin Fe3+ ion with S=5/2, implying the possible short-range antiferromagnetic fluctuation in Ba2BiFeS5.

    Spin transport in antiferromagnetic insulators
    Zhiyong Qiu(邱志勇), Dazhi Hou(侯达之)
    Chin. Phys. B, 2019, 28 (8): 088504.   DOI: 10.1088/1674-1056/28/8/088504
    Abstract715)   HTML    PDF (3095KB)(491)      
    Electrical spin, which is the key element of spintronics, has been regarded as a powerful substitute for the electrical charge in the next generation of information technology, in which spin plays the role of the carrier of information and/or energy in a similar way to the electrical charge in electronics. Spin-transport phenomena in different materials are central topics of spintronics. Unlike electrical charge, spin transport does not depend on electron motion, particularly spin can be transported in insulators without accompanying Joule heating. Therefore, insulators are considered to be ideal materials for spin conductors, in which magnetic insulators are the most compelling systems. Recently, we experimentally studied and theoretically discussed spin transport in various antiferromagnetic systems and identified spin susceptibility and the Néel vector as the most important factors for spin transport in antiferromagnetic systems. Herein, we summarize our experimental results, physical nature, and puzzles unknown. Further challenges and potential applications are also discussed.
    Electronic and magnetic properties of CrI3 nanoribbons and nanotubes
    Ji-Zhang Wang(王吉章), Jian-Qi Huang(黄建啟), Ya-Ning Wang(王雅宁), Teng Yang(杨腾), Zhi-Dong Zhang(张志东)
    Chin. Phys. B, 2019, 28 (7): 077301.   DOI: 10.1088/1674-1056/28/7/077301
    Abstract669)   HTML    PDF (3160KB)(304)      

    CrI3 in two-dimensional (2D) forms has been attracting much attention lately due to its novel magnetic properties at atomic large scale. The size and edge tuning of electronic and magnetic properties for 2D materials has been a promising way to broaden or even enhance their utility, as the case with nanoribbons/nanotubes in graphene, black phosphorus, and transition metal dichalcogenides. Here we studied the CrI3 nanoribbon (NR) and nanotube (NT) systematically to seek the possible size and edge control of the electronic and magnetic properties. We find that ferromagnetic ordering is stable in all the NR and NT structures of interest. An enhancement of the Curie temperature TC can be expected when the structure goes to NR or NT from its 2D counterpart. The energy difference between the FM and AFM states can be even improved by up to 3-4 times in a zigzag nanoribbon (ZZNR), largely because of the electronic instability arising from a large density of states of iodine-5p orbitals at EF. In NT structures, shrinking the tube size harvests an enhancement of spin moment by up to 4%, due to the reduced crystal-field gap and the re-balance between the spin majority and minority populations.

    Critical behavior and magnetocaloric effect in magnetic Weyl semimetal candidate Co2-xZrSn
    Tianlin Yu(于天麟), Xiaoyun Yu(余骁昀), En Yang(杨恩), Chang Sun(孙畅), Xiao Zhang(张晓), Ming Lei(雷鸣)
    Chin. Phys. B, 2019, 28 (6): 067501.   DOI: 10.1088/1674-1056/28/6/067501
    Abstract602)   HTML    PDF (808KB)(227)      

    We investigate the critical exponents and magnetocaloric effect of Co2-xZrSn polycrystal. The Co2-xZrSn undergoes a second-order ferromagnetism phase transition around the Curie temperature of Tc~280 K. The critical behavior in the vicinity of the magnetic phase transition has been investigated by using modified Arrott plot and Kouvel-Fisher methods. The obtained critical exponents, β, γ, and δ can be well described by the scaling theory. The determined exponents of Co2-xZrSn obey the mean-field model with a long-range magnetic interaction. In addition, the maximum magnetic entropy change -ΔSMmax of Co2-xZrSn is about 0.57 J·kg-1·K-1 and the relative cooling power (RCP) is 14.68 J·kg-1 at 50 kOe (1 Oe=79.5775 A·m-1).

    Spin glassy behavior and large exchange bias effect in cubic perovskite Ba0.8Sr0.2FeO3-δ
    Yu-Xuan Liu(刘宇轩), Zhe-Hong Liu(刘哲宏), Xu-Bin Ye(叶旭斌), Xu-Dong Shen(申旭东), Xiao Wang(王潇), Bo-Wen Zhou(周博文), Guang-Hui Zhou(周光辉), You-Wen Long(龙有文)
    Chin. Phys. B, 2019, 28 (6): 068104.   DOI: 10.1088/1674-1056/28/6/068104
    Abstract602)   HTML    PDF (1770KB)(196)      

    A single-phase iron oxide Ba0.8Sr0.2FeO3-δ with a simple cubic perovskite structure in Pm-3m symmetry is successfully synthesized by a solid-state reaction method in O2 flow. The oxygen content is determined to be about 2.81, indicating the formation of mixed Fe3+ and Fe4+ charge states with a disorder fashion. As a result, the compound shows small-polaron conductivity behavior, as well as spin glassy features arising from the competition between the ferromagnetic interaction and the antiferromagnetic interaction. Moreover, the competing interactions also give rise to a remarkable exchange bias effect in Ba0.8Sr0.2FeO2.81, providing an opportunity to use it in spin devices.

    Crystallographic and magnetic properties of van der Waals layered FePS3 crystal
    Qi-Yun Xie(解其云), Min Wu(吴敏), Li-Min Chen(陈丽敏), Gang Bai(白刚), Wen-Qin Zou(邹文琴), Wei Wang(王伟), Liang He(何亮)
    Chin. Phys. B, 2019, 28 (5): 056102.   DOI: 10.1088/1674-1056/28/5/056102
    Abstract595)   HTML    PDF (1154KB)(359)      

    The crystallographic and magnetic properties are presented for van der Waals antiferromagnetic FePS3. High-quality single crystals of millimeter size have been successfully synthesized through the chemical vapor transport method. The layered structure and cleavability of the compound are apparent, which are beneficial for a potential exploration of the interesting low dimensional magnetism, as well as for incorporation of FePS3 into van der Waals heterostructures. For the sake of completeness, we have measured both direct current (dc) and alternating current (ac) magnetic susceptibility. The paramagnetic to antiferromagnetic transition occurs at approximately TN~115 K. The effective moment is larger than the spin-only effective moment, suggesting that an orbital contribution to the total angular momentum of the Fe2+ could be present. The ac susceptibility is independent of frequency, which means that the spin freezing effect is excluded. Strong anisotropy of out-of-plane and in-plane susceptibility has been shown, demonstrating the Ising-type magnetic order in FePS3 system.

    Raman scattering study of magnetic layered MPS3 crystals (M=Mn, Fe, Ni)
    Yi-Meng Wang(王艺朦), Jian-Feng Zhang(张建丰), Cheng-He Li(李承贺), Xiao-Li Ma(马肖莉), Jian-Ting Ji(籍建葶), Feng Jin(金峰), He-Chang Lei(雷和畅), Kai Liu(刘凯), Wei-Lu Zhang(张玮璐), Qing-Ming Zhang(张清明)
    Chin. Phys. B, 2019, 28 (5): 056301.   DOI: 10.1088/1674-1056/28/5/056301
    Abstract763)   HTML    PDF (1176KB)(446)      

    We report a comprehensive Raman scattering study on layered MPS3 (M=Mn, Fe, Ni), a two-dimensional magnetic compound with weak van der Waals interlayer coupling. The observed Raman phonon modes have been well assigned by the combination of first-principles calculations and the polarization-resolved spectra. Careful symmetry analysis on the angle-dependent spectra demonstrates that the crystal symmetry is strictly described by C2h but can be simplified to D3d with good accuracy. Interestingly, the three compounds share exactly the same lattice structure but show distinct magnetic structures. This provides us with a unique opportunity to study the effect of different magnetic orders on lattice dynamics in MPS3. Our results reveal that the in-plane Néel antiferromagnetic (AF) order in MnPS3 favors a spin-phonon coupling compared to the in-plane zig-zag AF in NiPS3 and FePS3. We have discussed the mechanism in terms of the folding of magnetic Brillouin zones. Our results provide insights into the relation between lattice dynamics and magnetism in the layered MPX3 (M=transition metal, X=S, Se) family and shed light on the magnetism of monolayer MPX3 materials.

    Effects of chemical pressure on diluted magnetic semiconductor (Ba,K)(Zn,Mn)2As2
    Y Peng(彭毅), S Yu(于爽), G Q Zhao(赵国强), W M Li(李文敏), J F Zhao(赵建发), L P Cao(曹立朋), X C Wang(望贤成), Q Q Liu(刘清青), S J Zhang(张思佳), R Z Yu(于润泽), Z Deng(邓正), X H Zhu(朱小红), C Q Jin(靳常青)
    Chin. Phys. B, 2019, 28 (5): 057501.   DOI: 10.1088/1674-1056/28/5/057501
    Abstract576)   HTML    PDF (1330KB)(253)      

    Chemical pressure induced by iso-valent doping has been widely employed to tune physical properties of materials. In this work, we report effects of chemical pressure by substitution of Sb or P into As on a recently discovered diluted magnetic semiconductor (Ba,K)(Zn,Mn)2As2, which has the record of reliable Curie temperature of 230 K due to independent charge and spin doping. Sb and P are substituted into As-site to produce negative and positive chemical pressures, respectively. X-ray diffraction results demonstrate the successful chemical solution of dopants. Magnetic properties of both K-under-doped and K-optimal-doped samples are effectively tuned by Sb- and P-doping. The Hall effect measurements do not show decrease in carrier concentrations upon Sb- and P-doping. Impressively, magnetoresistance is significantly improved from 7% to 27% by only 10% P-doping, successfully extending potential application of (Ba,K)(Zn,Mn)2As2.

    Computational study of inverse ferrite spinels
    A EL Maazouzi, R Masrour, A Jabar, M Hamedoun
    Chin. Phys. B, 2019, 28 (5): 057504.   DOI: 10.1088/1674-1056/28/5/057504
    Abstract418)   HTML    PDF (520KB)(176)      

    The magnetic properties of inverse ferrite (Fe3+) [Fe3+Co2+]O42-,(Fe3+) [Fe3+Cu2+]O42-,(Fe3+) [Fe3+Fe2+]O42-, and (Fe3+) [Fe3+Ni2+]O42- spinels have been studied using Monte Carlo simulation. We have also calculated the critical and Curie Weiss temperatures from the thermal magnetizations and inverse of magnetic susceptibilities for each system. Magnetic hysteresis cycles have been found for the four systems. Finally, we found the critical exponents associated with magnetization, magnetic susceptibility, and external magnetic field. Our results of critical and Curie Weiss temperatures are similar to those obtained by experiment results. The critical exponents are similar to those of known 3D-Ising model.

    Magnetization-direction-dependent inverse spin Hall effect observed in IrMn/NiFe/Cu/YIG multilayer structure
    Runrun Hao(郝润润), Ruxue Zang(臧如雪), Tie Zhou(周铁), Shishou Kang(康仕寿), Shishen Yan(颜世申), Guolei Liu(刘国磊), Guangbing Han(韩广兵), Shuyun Yu(于淑云), Liangmo Mei(梅良模)
    Chin. Phys. B, 2019, 28 (3): 037202.   DOI: 10.1088/1674-1056/28/3/037202
    Abstract643)   HTML    PDF (1501KB)(160)      

    The magnetization-direction-dependent inverse spin Hall effect (ISHE) has been observed in NiFe film during spin Seebeck measurement in IrMn/NiFe/Cu/yttrium iron garnet (YIG) multilayer structure, where the YIG and NiFe layers act as the spin injector and spin current detector, respectively. By using the NiFe/IrMn exchange bias structure, the magnetization direction of YIG (MYIG) can be rotated with respect to that of NiFe (MNiFe) with a small magnetic field, thus allowing us to observe the magnetization-direction-dependent inverse spin Hall effect voltage in NiFe layer. Compared with the situation that polarization direction of spin current (σs) is perpendicular to MNiFe, the spin Seebeck voltage is about 30% larger than that when σs and MNiFe are parallel to each other. This phenomenon may originate from either or both of stronger interface or bulk scattering to spin current when σs and MNiFe are perpendicular to each other. Our work provides a way to control the voltage induced by ISHE in ferromagnets.

    Spin torque nano-oscillators with a perpendicular spin polarizer
    Cuixiu Zheng(郑翠秀), Hao-Hsau Chen(陈浩轩), Xiangli Zhang(张祥丽), Zongzhi Zhang(张宗芝), Yaowen Liu(刘要稳)
    Chin. Phys. B, 2019, 28 (3): 037503.   DOI: 10.1088/1674-1056/28/3/037503
    Abstract969)   HTML    PDF (1704KB)(272)      
    We present an overview in the understanding of spin-transfer torque (STT) induced magnetization dynamics in spin-torque nano-oscillator (STNO) devices. The STNO contains an in-plane (IP) magnetized free layer and an out-of-plane (OP) magnetized spin polarizing layer. After a brief introduction, we first use mesoscopic micromagnetic simulations, which are based on the Landau-Lifshitz-Gilbert equation including the STT effect, to specify how a spin-torque term may tune the magnetization precession orbits of the free layer, showing that the oscillator frequency is proportional to the current density and the z-component of the free layer magnetization. Next, we propose a pendulum-like model within the macrospin approximation to describe the dynamic properties in such type of STNOs. After that, we further show the procession dynamics of the STNOs excited by IP and OP dual spin-polarizers. Both the numerical simulations and analytical theory indicate that the precession frequency is linearly proportional to the spin-torque of the OP polarizer only and is irrelevant to the spin-torque of the IP polarizer. Finally, a promising approach of coordinate transformation from the laboratory frame to the rotation frame is introduced, by which the nonstationary OP magnetization precession process is therefore transformed into the stationary process in the rotation frame. Through this method, a promising digital frequency shift-key modulation technique is presented, in which the magnetization precession can be well controlled at a given orbit as well as its precession frequency can be tuned with the co-action of spin polarized current and magnetic field (or electric field) pulses.
    Antiferromagnetic interlayer coupling of (111)-oriented La0.67Sr0.33MnO3/SrRuO3 superlattices
    Hui Zhang(张慧), Jing Zhang(张静), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Hai-Lin Huang(黄海林), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣)
    Chin. Phys. B, 2019, 28 (3): 037501.   DOI: 10.1088/1674-1056/28/3/037501
    Abstract631)   HTML    PDF (773KB)(191)      

    We report a strong antiferromagnetic (AFM) interlayer coupling in ferromagnetic La0.67Sr0.33MnO3/SrRuO3 (LSMO/SRO) superlattices grown on (111)-oriented SrTiO3 substrate. Unlike the (001) superlattices for which the spin alignment between LSMO and SRO is antiparallel in the in-plane direction and parallel in the out-of-plane direction, the antiparallel alignment is observed along both the in-plane and out-of-plane directions in the present sample. The low temperature hysteresis loop demonstrates two-step magnetic processes, indicating the coexistence of magnetically soft and hard components. Moreover, an inverted hysteresis loop was observed. Exchange bias tuned by the temperature and cooling field was also investigated, and positive as well as negative exchange bias was observed at the same temperature with the variation of the cooling field. A very large exchange field (HEB) was observed and both magnitude and sign of the HEB depend on the cooling field, which can be attributed to an interplay of Zeeman energy and AFM coupling energy at the interfaces. The present work shows the great potential of tuning a spin texture through interfacial engineering for the complex oxides whose spin state is jointly determined by strongly competing mechanisms.