Content of TOPICAL REVIEW—Optical field manipulation in our journal

        Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For selected: Toggle thumbnails
    Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
    Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红)
    Chin. Phys. B, 2022, 31 (3): 033101.   DOI: 10.1088/1674-1056/ac306b
    Abstract400)   HTML1)    PDF (6203KB)(218)      
    The semiclassical method based on Feynman's path-integral is in favor of uncovering the quantum tunneling effect, the classical trajectory description of the electron, and the quantum phase information, which can present an intuitive and transparent physical image of electron's propagation in comparison with the ab initio time-dependent Schrödinger equation. In this review, we introduce the basic theoretical concepts and development of several semiclassical methods as well as some of their applications in strong-field physics. Special emphasis is placed on extracting time delay on attosecond scale by the combination of the semiclassical method with phase of phase method. Hundreds of millions of trajectories are generally adopted to obtain a relatively high-resolution photoelectron spectrum, which would take a large amount of time. Here we also introduce several optimization approaches of the semiclassical method to overcome the time-consuming problem of violence calculation.
    Strong-field response time and its implications on attosecond measurement
    Chao Chen(陈超), Jiayin Che(车佳殷), Xuejiao Xie(谢雪娇), Shang Wang(王赏), Guoguo Xin(辛国国), and Yanjun Chen(陈彦军)
    Chin. Phys. B, 2022, 31 (3): 033201.   DOI: 10.1088/1674-1056/ac29ab
    Abstract333)   HTML2)    PDF (3328KB)(107)      
    To measure and control the electron motion in atoms and molecules by the strong laser field on the attosecond time scale is one of the research frontiers of atomic and molecular photophysics. It involves many new phenomena and processes and raises a series of questions of concepts, theories, and methods. Recent studies show that the Coulomb potential can cause the ionization time lag (about 100 attoseconds) between instants of the field maximum and the ionization-rate maximum. This lag can be understood as the response time of the electronic wave function to the strong-field-induced ionization event. It has a profound influence on the subsequent ultrafast dynamics of the ionized electron and can significantly change the time—frequency properties of electron trajectory (an important theoretical tool for attosecond measurement). Here, the research progress of response time and its implications on attosecond measurement are briefly introduced.
    Superchiral fields generated by nanostructures and their applications for chiral sensing
    Huizhen Zhang(张慧珍), Weixuan Zhang(张蔚暄), Saisai Hou(侯赛赛), Rongyao Wang(王荣瑶), and Xiangdong Zhang(张向东)
    Chin. Phys. B, 2021, 30 (11): 113303.   DOI: 10.1088/1674-1056/ac11df
    Abstract401)   HTML1)    PDF (7726KB)(162)      
    Chirality is ubiquitous in natural world. Although with similar physical and chemical properties, chiral enantiomers could play different roles in biochemical processes. Discrimination of chiral enantiomers is extremely important in biochemical, analytical chemistry, and pharmaceutical industries. Conventional chiroptical spectroscopic methods are disadvantageous at a limited detection sensitivity because of the weak signals of natural chiral molecules. Recently, superchiral fields were proposed to effectively enhance the interaction between light and molecules, allowing for ultrasensitive chiral detection. Intensive theoretical and experimental works have been devoted to generation of superchiral fields based on artificial nanostructures and their application in ultrasensitive chiral sensing. In this review, we present a survey on these works. We begin with the introduction of chiral properties of electromagnetic fields. Then, the optical chirality enhancement and ultrasensitive chiral detection based on chiral and achiral nanostructures are discussed respectively. Finally, we give a short summary and a perspective for the future ultrasensitive chiral sensing.
    Photonic-plasmonic hybrid microcavities: Physics and applications
    Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠)
    Chin. Phys. B, 2021, 30 (11): 117801.   DOI: 10.1088/1674-1056/ac0db3
    Abstract450)   HTML3)    PDF (4257KB)(260)      
    Photonic-plasmonic hybrid microcavities, which possess a higher figure of merit Q/V (the ratio of quality factor to mode volume) than that of pure photonic microcavities or pure plasmonic nano-antennas, play key roles in enhancing light-matter interaction. In this review, we summarize the typical photonic-plasmonic hybrid microcavities, such as photonic crystal microcavities combined with plasmonic nano-antenna, whispering gallery mode microcavities combined with plasmonic nano-antenna, and Fabry-Perot microcavities with plasmonic nano-antenna. The physics and applications of each hybrid photonic-plasmonic system are illustrated. The recent developments of topological photonic crystal microcavities and topological hybrid nano-cavities are also introduced, which demonstrates that topological microcavities can provide a robust platform for the realization of nanophotonic devices. This review can bring comprehensive physical insights of the hybrid system, and reveal that the hybrid system is a good platform for realizing strong light-matter interaction.
    Research progress of femtosecond surface plasmon polariton
    Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪)
    Chin. Phys. B, 2020, 29 (2): 027302.   DOI: 10.1088/1674-1056/ab6717
    Abstract704)   HTML    PDF (14170KB)(358)      
    As the combination of surface plasmon polariton and femtosecond laser pulse, femtosecond surface plasmon polariton has both nanoscale spatial resolution and femtosecond temporal resolution, and thus provides promising methods for light field manipulation and light-matter interaction in extreme small spatiotemporal scales. Nowadays, the research on femtosecond surface plasmon polariton is mainly concentrated on two aspects: one is investigation and characterization of excitation, propagation, and dispersion properties of femtosecond surface plasmon polariton in different structures or materials; the other one is developing new applications based on its unique properties in the fields of nonlinear enhancement, pulse shaping, spatiotemporal super-resolved imaging, and others. Here, we introduce the research progress of properties and applications of femtosecond surface plasmon polariton, and prospect its future research trends. With the further development of femtosecond surface plasmon polariton research, it will have a profound impact on nano-optoelectronics, molecular dynamics, biomedicine and other fields.
ISSN 1674-1056   CN 11-5639/O4

Current issue

, Vol. 33, No. 3

Previous issues

1992 - present