Content of TOPICAL REVIEW—Water at molecular level in our journal

        Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For selected: Toggle thumbnails
    Evaporation of nanoscale water on solid surfaces
    Rongzheng Wan(万荣正) and Haiping Fang(方海平)
    Chin. Phys. B, 2020, 29 (12): 126601.   DOI: 10.1088/1674-1056/abc0d3
    Abstract421)   HTML    PDF (1408KB)(294)      
    The evaporation of water is essential in the macroscopic world. Recent researches show that, on solid surfaces, the evaporation of nanoscale water is quite different from that on bulk water surfaces. In this review, we show the theoretical progress in the study of nanoscale water evaporation on various solid surfaces: the evaporation rate of nanoscale water does not show a monotonic decrease when the solid surface changes from hydrophobic to hydrophilic; the evaporation of nanoscale water on hydrophobic-hydrophilic patterned surfaces is unexpectedly faster than that on uniform surface; the evaporation of nanoscale water on patterned graphene oxide is faster than that on homogeneous one; how temperature affects the evaporation of nanoscale water on solid surface; how ions affect the evaporation of nanoscale water on graphene oxide.
    Atomic-level characterization of liquid/solid interface
    Jiani Hong(洪嘉妮) and Ying Jiang(江颖)
    Chin. Phys. B, 2020, 29 (11): 116803.   DOI: 10.1088/1674-1056/aba9d0
    Abstract463)   HTML    PDF (2242KB)(406)      

    The detailed understanding of various underlying processes at liquid/solid interfaces requires the development of interface-sensitive and high-resolution experimental techniques with atomic precision. In this perspective, we review the recent advances in studying the liquid/solid interfaces at atomic level by electrochemical scanning tunneling microscope (EC-STM), non-contact atomic force microscopy (NC-AFM), and surface-sensitive vibrational spectroscopies. Different from the ultrahigh vacuum and cryogenic experiments, these techniques are all operated in situ under ambient condition, making the measurements close to the native state of the liquid/solid interface. In the end, we present some perspectives on emerging techniques, which can defeat the limitation of existing imaging and spectroscopic methods in the characterization of liquid/solid interfaces.

    Water on surfaces from first-principles molecular dynamics
    Peiwei You(游佩桅), Jiyu Xu(徐纪玉), Cui Zhang(张萃), and Sheng Meng(孟胜)$
    Chin. Phys. B, 2020, 29 (11): 116804.   DOI: 10.1088/1674-1056/aba279
    Abstract499)   HTML    PDF (1229KB)(351)      

    Water is ubiquitous and so is its presence in the proximity of surfaces. To determine and control the properties of interfacial water molecules at nanoscale is essential for its successful applications in environmental and energy-related fields. It is very challenging to explore the atomic structure and electronic properties of water under various conditions, especially at the surfaces. Here we review recent progress and open challenges in describing physicochemical properties of water on surfaces for solar water splitting, water corrosion, and desalination using first-principles approaches, and highlight the key role of these methods in understanding the complex electronic and dynamic interplay between water and surfaces. We aim at showing the importance of unraveling fundamental mechanisms and providing physical insights into the behavior of water on surfaces, in order to pave the way to water-related material design.

    Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
    Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤)
    Chin. Phys. B, 2020, 29 (8): 087804.   DOI: 10.1088/1674-1056/ab9c07
    Abstract687)   HTML    PDF (2100KB)(324)      

    Transport properties and the associated structural heterogeneity of room temperature aqueous ionic liquids and especially of super-concentrated electrolyte aqueous solutions have received increasing attention, due to their potential application in ionic battery. This paper briefly reviews the results reported mainly since 2010 about the liquid-liquid separation, aggregation of polar and apolar domains in neat RTILs, and solvent clusters and 3D networks chiefly constructed by anions in super-concentrated electrolyte solutions. At the same time, the dominating effect of desolvation process of metal ions at electrode/electrolyte interface upon the transport of metal ions is stressed. This paper also presents the current understanding of how water affects the anion-cation interaction, structural heterogeneities, the structure of primary coordination sheath of metal ions and consequently their transport properties in free water-poor electrolytes.

    Rules essential for water molecular undercoordination
    Chang Q Sun(孙长庆)
    Chin. Phys. B, 2020, 29 (8): 088203.   DOI: 10.1088/1674-1056/ab8dad
    Abstract450)   HTML    PDF (3431KB)(164)      

    A sequential of concepts developed in the last decade has enabled a resolution to multiple anomalies of water ice and its low-dimensionality, particularly. Developed concepts include the coupled hydrogen bond (O:H-O) oscillator pair, segmental specific heat, three-body coupling potentials, quasisolidity, and supersolidity. Resolved anomalies include ice buoyancy, ice slipperiness, water skin toughness, supercooling and superheating at the nanoscale, etc. Evidence shows consistently that molecular undercoordination shortens the H-O bond and stiffens its phonon while undercoordination does the O:H nonbond contrastingly associated with strong lone pair “:” polarization, which endows the low-dimensional water ice with supersolidity. The supersolid phase is hydrophobic, less dense, viscoelastic, thermally more diffusive, and stable, having longer electron and phonon lifetime. The equal number of lone pairs and protons reserves the configuration and orientation of the coupled O:H-O bonds and restricts molecular rotation and proton hopping, which entitles water the simplest, ordered, tetrahedrally-coordinated, fluctuating molecular crystal covered with a supersolid skin. The O:H-O segmental cooperativity and specific-heat disparity form the soul dictate the extraordinary adaptivity, reactivity, recoverability, and sensitivity of water ice when subjecting to physical perturbation. It is recommended that the premise of “hydrogen bonding and electronic dynamics” would deepen the insight into the core physics and chemistry of water ice.

ISSN 1674-1056   CN 11-5639/O4

Current issue

, Vol. 33, No. 3

Previous issues

1992 - present