Content of SPECIAL TOPIC—110th Anniversary of Lanzhou University in our journal

        Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For selected: Toggle thumbnails
    Enhancing von Neumann entropy by chaos in spin-orbit entanglement
    Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚)
    Chin. Phys. B, 2019, 28 (10): 100501.   DOI: 10.1088/1674-1056/ab3dff
    Abstract586)   HTML    PDF (1424KB)(149)      
    For a quantum system with multiple degrees of freedom or subspaces, loss of coherence in a certain subspace is intimately related to the enhancement of entanglement between this subspace and another one. We investigate intra-particle entanglement in two-dimensional mesoscopic systems, where an electron has both spin and orbital degrees of freedom and the interaction between them is enabled by Rashba type of spin-orbit coupling. The geometric shape of the scattering region can be adjusted to produce a continuous spectrum of classical dynamics with different degree of chaos. Focusing on the spin degree of freedom in the weak spin-orbit coupling regime, we find that classical chaos can significantly enhance spin-orbit entanglement at the expense of spin coherence. Our finding that classical chaos can be beneficial to intra-particle entanglement may have potential applications such as enhancing the bandwidth of quantum communications.
    Experimental investigation of the fluctuations in nonchaotic scattering in microwave billiards
    Runzu Zhang(张润祖), Weihua Zhang(张为华), Barbara Dietz, Guozhi Chai(柴国志), Liang Huang(黄亮)
    Chin. Phys. B, 2019, 28 (10): 100502.   DOI: 10.1088/1674-1056/ab3f96
    Abstract530)   HTML    PDF (4452KB)(136)      
    We report on the experimental investigation of the properties of the eigenvalues and wavefunctions and the fluctuation properties of the scattering matrix of closed and open billiards, respectively, of which the classical dynamics undergoes a transition from integrable via almost integrable to fully chaotic. To realize such a system, we chose a billiard with a 60° sector shape of which the classical dynamics is integrable, and introduced circular scatterers of varying number, size, and position. The spectral properties of generic quantum systems of which the classical counterpart is either integrable or chaotic are universal and well understood. If, however, the classical dynamics is pseudo-integrable or almost-integrable, they exhibit a non-universal intermediate statistics, for which analytical results are known only in a few cases, e.g., if it corresponds to semi-Poisson statistics. Since the latter is, above all, clearly distinguishable from those of integrable and chaotic systems, our aim was to design a billiard with these features which indeed is achievable by adding just one scatterer of appropriate size and position to the sector billiard. We demonstrated that, while the spectral properties of almost-integrable billiards are sensitive to the classical dynamics, this is not the case for the distribution of the wavefunction components, which was analyzed in terms of the strength distribution, and the fluctuation properties of the scattering matrix which coincide with those of typical, fully chaotic systems.
    Benchmarking the simplest slave-particle theory with Hubbard dimer
    Wei-Wei Yang(杨薇薇), Hong-Gang Luo(罗洪刚), Yin Zhong(钟寅)
    Chin. Phys. B, 2019, 28 (10): 107103.   DOI: 10.1088/1674-1056/ab3dfe
    Abstract534)   HTML    PDF (858KB)(111)      
    Slave-particle method is a powerful tool to tackle the correlation effect in quantum many-body physics. Although it has been successfully used to comprehend various intriguing problems, such as Mott metal-insulator transition and Kondo effect, there is still no convincing theory so far on the availability and limitation of this method. The abuse of slave-particle method may lead to wrong physics. As the simplest slave-particle method, Z2 slave spin, which is widely applied to many strongly correlated problems, is highly accessible and researchable. In this work, we will uncover the nature of the Z2 slave-spin method by studying a two-site Hubbard model. After exploring aspects of properties of this toy model, we make a comparative analysis of the results obtained by three methods:(i) slave-spin method on mean-field level, (ii) slave-spin method with gauge constraint, and (iii) the exact solution as a benchmark. We find that, protected by the particle-hole symmetry, the slave-spin mean-field method can recover the static properties of ground state exactly at half filling. Furthermore, in the parameter space where both U and T are small enough, the slave-spin mean-field method is also reliable in calculating the dynamic and thermal dynamic properties. However, when U or T is considerably large, the mean-field approximation gives ill-defined behaviors, which result from the unphysical states in the enlarged Hilbert space. These findings lead to our conclusion that the accuracy of slave particle can be guaranteed if we can exclude all unphysical states by enforcing gauge constraints. Our work demonstrates the promising prospect of slave-particle method in studying complex strongly correlated models with specific symmetry or in certain parameter space.
    Quasi-periodic events on structured earthquake models
    Bin-Quan Li(李斌全), Zhi-Xi Wu(吴枝喜), Sheng-Jun Wang(王圣军)
    Chin. Phys. B, 2019, 28 (9): 090503.   DOI: 10.1088/1674-1056/ab3449
    Abstract474)   HTML    PDF (2066KB)(121)      

    There has been much interest in studying quasi-periodic events on earthquake models. Here we investigate quasi-periodic events in the avalanche time series on structured earthquake models by the analysis of the autocorrelation function and the fast Fourier transform. For random spatial earthquake models, quasi-periodic events are robust and we obtain a simple rule for a period that is proportional to the choice of unit time and the dissipation of the system. Moreover, computer simulations validate this rule for two-dimensional lattice models and cycle graphs, but our simulation results also show that small-world models, scale-free models, and random rule graphs do not have periodic phenomena. Although the periodicity of avalanche does not depend on the criticality of the system or the average degree of the system or the size of the system, there is evidence that it depends on the time series of the average force of the system.

    Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
    Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙)
    Chin. Phys. B, 2019, 28 (9): 097501.   DOI: 10.1088/1674-1056/ab37f7
    Abstract465)   HTML    PDF (366KB)(141)      

    The interfacial magnetoelectric interaction originating from multi-orbital hopping processes with ferroelectric-associated vector potential is theoretically investigated for complex-oxide composite structures. Large mismatch in the electrical permittivity of the ferroelectric and ferromagnetic materials gives rise to giant anisotropic magnetoelectric effects at their interface. Our study reveals a strong linear dynamic magnetoelectric coupling which genuinely results in electric control of magnetic susceptibility. The constitutive conditions for negative refractive index of multiferroic composites are determined by the analysis of light propagation.

    The effect of Mn-doped ZnSe passivation layer on the performance of CdS/CdSe quantum dot-sensitized solar cells
    Yun-Long Deng(邓云龙), Zhi-Yuan Xu(徐知源), Kai Cai(蔡凯), Fei Ma(马飞), Juan Hou(侯娟), Shang-Long Peng(彭尚龙)
    Chin. Phys. B, 2019, 28 (9): 098802.   DOI: 10.1088/1674-1056/ab37f3
    Abstract637)   HTML    PDF (1814KB)(150)      

    ZnSe as a surface passivation layer in quantum dot-sensitized solar cells plays an important role in preventing charge recombination and thus improves the power conversion efficiency (PCE). However, as a wide bandgap semiconductor, ZnSe cannot efficiently absorb and convert long-wavelength light. Doping transition metal ions into ZnSe semiconductors is an effective way to adjust the band gap, such as manganese ions. In this paper, it is found by the method of density functional theory calculation that the valence band of ZnSe moves upward with manganese ions doping, which leads to acceleration of charge separation, wider light absorption range, and enhancing light harvesting. Finally, by using ZnSe doped with manganese ions as the passivation layer, the TiO2/CdS/CdSe co-sensitized solar cell has a PCE of 6.12%, and the PCE of the solar cell increases by 9% compared with the undoped one (5.62%).

ISSN 1674-1056   CN 11-5639/O4

Current issue

, Vol. 33, No. 3

Previous issues

1992 - present