Content of CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES in our journal

        Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For selected: Toggle thumbnails
    Effects of vacancy and external electric field on the electronic properties of the MoSi2N4/graphene heterostructure
    Qian Liang(梁前), Xiangyan Luo(罗祥燕), Guolin Qian(钱国林), Yuanfan Wang(王远帆), Yongchao Liang(梁永超), and Quan Xie(谢泉)
    Chin. Phys. B, 2024, 33 (3): 037101.   DOI: 10.1088/1674-1056/acef04
    Abstract35)   HTML0)    PDF (4108KB)(28)      
    Recently, the newly synthesized septuple-atomic layer two-dimensional (2D) material MoSi2N4 (MSN) has attracted attention worldwide. Our work delves into the effect of vacancies and external electric fields on the electronic properties of the MSN/graphene (Gr) heterostructure using first-principles calculation. We find that four types of defective structures, N-in, N-out, Si and Mo vacancy defects of monolayer MSN and MSN/Gr heterostructure are stable in air. Moreover, vacancy defects can effectively modulate the charge transfer at the interface of the MSN/Gr heterostructure as well as the work function of the pristine monolayer MSN and MSN/Gr heterostructure. Finally, the application of an external electric field enables the dynamic switching between n-type and p-type Schottky contacts. Our work may offer the possibility of exceeding the capabilities of conventional Schottky diodes based on MSN/Gr heterostructures.
    Exciton-polaritons in a 2D hybrid organic-inorganic perovskite microcavity with the presence of optical Stark effect
    Kenneth Coker, Chuyuan Zheng(郑楚媛), Joseph Roger Arhin, Kwame Opuni-Boachie Obour Agyekum, and Weili Zhang(张伟利)
    Chin. Phys. B, 2024, 33 (3): 037102.   DOI: 10.1088/1674-1056/ad1484
    Abstract34)   HTML1)    PDF (1127KB)(34)      
    This study investigates the properties of exciton-polaritons in a two-dimensional (2D) hybrid organic-inorganic perovskite microcavity in the presence of optical Stark effect. Through both steady and dynamic state analyses, strong coupling between excitons of perovskite and cavity photons is revealed, indicating the formation of polaritons in the perovskite microcavity. Besides, it is found that an external optical Stark pulse can induce energy shifts of excitons proportional to the pulse intensity, which modifies the dispersion characteristics of the polaritons.
    Effect of electron-electron interaction on polarization process of exciton and biexciton in conjugated polymer
    Xiao-Xue Li(李晓雪), Hua Peng(彭华), Dong Wang(王栋), and Dong Hou(侯栋)
    Chin. Phys. B, 2024, 33 (3): 037201.   DOI: 10.1088/1674-1056/ad0bf1
    Abstract32)   HTML0)    PDF (11294KB)(30)      
    By using one-dimensional tight-binding model modified to include electron-electric field interaction and electron-electron interaction, we theoretically explore the polarization process of exciton and biexciton in cis-polyacetylene. The dynamical simulation is performed by adopting the non-adiabatic evolution approach. The results show that under the effect of moderate electric field, when the strength of electron-electron interaction is weak, the singlet exciton is stable but its polarization presents obvious oscillation. With the enhancement of interaction, it is dissociated into polaron pairs, the spin-flip of which can be observed through modulating the interaction strength. For the triplet exciton, the strong electron-electron interaction restrains its normal polarization, but it is still stable. In the case of biexciton, the strong electron-electron interaction not only dissociate it, but also flip its charge distribution. The yield of the possible states formed after the dissociation of exciton and biexciton is also calculated.
    Negative magnetoresistance in the antiferromagnetic semimetal V1/3TaS2
    Zi Wang(王子), Xin Peng(彭馨), Shengnan Zhang(张胜男), Yahui Su(苏亚慧), Shaodong Lai(赖少东), Xuan Zhou(周旋), Chunxiang Wu(吴春翔), Tingyu Zhou(周霆宇), Hangdong Wang(王杭栋), Jinhu Yang(杨金虎), Bin Chen(陈斌), Huifei Zhai(翟会飞), Quansheng Wu(吴泉生), Jianhua Du(杜建华), Zhiwei Jiao(焦志伟), and Minghu Fang(方明虎)
    Chin. Phys. B, 2024, 33 (3): 037301.   DOI: 10.1088/1674-1056/ad18aa
    Abstract41)   HTML3)    PDF (1599KB)(48)      
    Intercalated transition metal dichalcogenides (TMDCs) attract much attention due to their rich properties and potential applications. In this article, we grew successfully high-quality V1/3TaS2 crystals by a vapor transport method. We measured the magnetization, longitudinal resistivity ρxx(T, H), Hall resistivity ρxy(T, H), as well as performed calculations of the electronic band structure. It was found that V1/3TaS2 is an A-type antiferromagnet with the Neel temperature TN = 6.20 K, and exhibits a negative magnetoresistance (MR) near TN. Both band structure calculations and Hall resistivity measurements demonstrated it is a magnetic semimetal.
    Exploring reservoir computing: Implementation via double stochastic nanowire networks
    Jian-Feng Tang(唐健峰), Lei Xia(夏磊), Guang-Li Li(李广隶), Jun Fu(付军), Shukai Duan(段书凯), and Lidan Wang(王丽丹)
    Chin. Phys. B, 2024, 33 (3): 037302.   DOI: 10.1088/1674-1056/aceeea
    Abstract35)   HTML0)    PDF (3697KB)(11)      
    Neuromorphic computing, inspired by the human brain, uses memristor devices for complex tasks. Recent studies show that self-organizing random nanowires can implement neuromorphic information processing, enabling data analysis. This paper presents a model based on these nanowire networks, with an improved conductance variation profile. We suggest using these networks for temporal information processing via a reservoir computing scheme and propose an efficient data encoding method using voltage pulses. The nanowire network layer generates dynamic behaviors for pulse voltages, allowing time series prediction analysis. Our experiment uses a double stochastic nanowire network architecture for processing multiple input signals, outperforming traditional reservoir computing in terms of fewer nodes, enriched dynamics and improved prediction accuracy. Experimental results confirm the high accuracy of this architecture on multiple real-time series datasets, making neuromorphic nanowire networks promising for physical implementation of reservoir computing.
    Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
    Feng Xu(徐峰) and Lei Zhang(张磊)
    Chin. Phys. B, 2024, 33 (3): 037402.   DOI: 10.1088/1674-1056/acf5d2
    Abstract33)   HTML0)    PDF (762KB)(26)      
    We study the coexistence of antiferromagnetism and unconventional superconductivity on the Creutz lattice which shows strictly flat bands in the noninteracting regime. The famous renormalized mean-field theory is used to deal with strong electron-electron repulsive Hubbard interaction in the effective low-energy t-J model, the superfluid weight of the unconventional superconducting state has been calculated via the linear response theory. An unconventional superconducting state with both spin-singlet and staggered spin-triplet pairs emerges beyond a critical antiferromagnetic coupling interaction, while antiferromagnetism accompanies this state. The superconducting state with only spin-singlet pairs is dominant with paramagnetic phase. The A phase is analogous to the pseudogap phase, which shows that electrons go to form pairs but do not cause a supercurrent. We also show the superfluid behavior of the unconventional superconducting state and its critical temperature. It is proven directly that the flat band can effectively raise the critical temperature of superconductivity. It is implementable to simulate and control strongly-correlated electrons' behavior on the Creutz lattice in the ultracold atoms experiment or other artificial structures. Our results may help the understanding of the interplay between unconventional superconductivity and magnetism.
    Mechanical and magnetocaloric adjustable properties of Fe3O4/PET deformed nanoparticle film
    Fengguo Fan(范凤国) and Lintong Duan(段林彤)
    Chin. Phys. B, 2024, 33 (3): 037502.   DOI: 10.1088/1674-1056/acf280
    Abstract27)   HTML0)    PDF (4760KB)(32)      
    The flexibility of nanoparticle films is a topic of rapidly growing interest in both scientific and engineering researches due to their numerous potential applications in a broad range of wearable electronics and biomedical devices. This article presents the elucidation of the properties of nanoparticle films. Here, a flexible film is fabricated based on polyethylene terephthalate (PET) and magnetic iron oxide at the nanoscale using layer-by-layer technology. The 2D thin flexible film material can be bent at different angles from 0° to 360°. With an increase in elastic deformation angles, the magnetocaloric effect of the film gradually increases in the alternating magnetic field. The test results from a vibrating sample magnetometer and a low-frequency impedance analyzer demonstrate that the film has a good magnetic response and anisotropy. The magnetocaloric effect and magnetic induction effect are controlled by deformation, providing a new idea for the application of elastic films. It combines the flexibility of the nanoparticle PET substrate and, in the future, it may be used for skin adhesion for administration and magnetic stimulation control.
    Interacting topological magnons in a checkerboard ferromagnet
    Heng Zhu(朱恒), Hongchao Shi(施洪潮), Zhengguo Tang(唐政国), and Bing Tang(唐炳)
    Chin. Phys. B, 2024, 33 (3): 037503.   DOI: 10.1088/1674-1056/ad01a2
    Abstract31)   HTML0)    PDF (1024KB)(22)      
    This work is devoted to studying the magnon-magnon interaction effect in a two-dimensional checkerboard ferromagnet with the Dzyaloshinskii-Moriya interaction. Using a first-order Green function method, we analyze the influence of magnon-magnon interaction on the magnon band topology. We find that Chern numbers of two renormalized magnon bands are different above and below the critical temperature, which means that the magnon band gap-closing phenomenon is an indicator for one topological phase transition of the checkerboard ferromagnet. Our results show that the checkerboard ferromagnet possesses two topological phases, and its topological phase can be controlled either via the temperature or the applied magnetic field due to magnon-magnon interactions. Interestingly, it is found that the topological phase transition can occur twice with the increase in the temperature, which is different from the results of the honeycomb ferromagnet.
    Unconventional room-temperature negative magnetoresistance effect in Au/n-Ge:Sb/Au devices
    Xiong He(何雄), Fan-Li Yang(杨凡黎), Hao-Yu Niu(牛浩峪), Li-Feng Wang(王立峰), Li-Zhi Yi(易立志),Yun-Li Xu(许云丽), Min Liu(刘敏), Li-Qing Pan(潘礼庆), and Zheng-Cai Xia(夏正才)
    Chin. Phys. B, 2024, 33 (3): 037504.   DOI: 10.1088/1674-1056/ad15f8
    Abstract74)   HTML0)    PDF (2858KB)(37)      
    Non-magnetic semiconductor materials and their devices have attracted wide attention since they are usually prone to exhibit large positive magnetoresistance (MR) effect in a low static magnetic field environment at room temperature. However, how to obtain a large room-temperature negative MR effect in them remains to be studied. In this paper, by designing an Au/n-Ge:Sb/Au device with metal electrodes located on identical side, we observe an obvious room-temperature negative MR effect in a specific 50 T pulsed high magnetic field direction environment, but not in a static low magnetic field environment. Through the analysis of the experimental measurement of the Hall effect results and bipolar transport theory, we propose that this unconventional negative MR effect is mainly related to the charge accumulation on the surface of the device under the modulation of the stronger Lorentz force provided by the pulsed high magnetic field. This theoretical analytical model is further confirmed by regulating the geometry size of the device. Our work sheds light on the development of novel magnetic sensing, magnetic logic and other devices based on non-magnetic semiconductors operating in pulsed high magnetic field environment.
    Spin gap in quasi-one-dimensional S=3/2 antiferromagnet CoTi2O5
    Hao-Hang Xu(徐浩航), Qing-Yuan Liu(刘庆元), Chao Xin(辛潮), Qin-Xin Shen(申沁鑫), Jun Luo(罗军), Rui Zhou(周睿), Jin-Guang Cheng(程金光), Jian Liu(刘健), Ling-Ling Tao(陶玲玲), Zhi-Guo Liu(刘志国), Ming-Xue Huo(霍明学), Xian-Jie Wang(王先杰), and Yu Sui(隋郁)
    Chin. Phys. B, 2024, 33 (3): 037505.   DOI: 10.1088/1674-1056/ad1381
    Abstract58)   HTML2)    PDF (1697KB)(36)      
    Quasi-one-dimensional (1D) antiferromagnets are known to display intriguing phenomena especially when there is a spin gap in their spin-excitation spectra. Here we demonstrate that a spin gap exists in the quasi-1D Heisenberg antiferromagnet CoTi2O5 with highly ordered Co2+/Ti4+ occupation, in which the Co2+ ions with S=3/2 form a 1D spin chain along the a-axis. CoTi2O5 undergoes an antiferromagnetic transition at TN ~ 24 K and exhibits obvious anisotropic magnetic susceptibility even in the paramagnetic region. Although a gapless magnetic ground state is usually expected in a quasi-1D Heisenberg antiferromagnet with half-integer spins, by analyzing the specific heat, the thermal conductivity, and the spin-lattice relaxation rate (1/T1) as a function of temperature, we found that a spin gap is opened in the spin-excitation spectrum of CoTi2O5 around TN, manifested by the rapid decrease of magnetic specific heat to zero, the double-peak characteristic in thermal conductivity, and the exponential decay of 1/T1 below TN. Both the magnetic measurements and the first-principles calculations results indicate that there is spin-orbit coupling in CoTi2O5, which induces the magnetic anisotropy in CoTi2O5, and then opens the spin gap at low temperature.
    Enhanced resonance frequency in Co2FeAl thin film with different thicknesses grown on flexible graphene substrate
    Cai Zhou(周偲), Shaokang Yuan(袁少康), Dengyu Zhu(朱登玉), Yuming Bai(白宇明), Tao Wang(王韬), Fufu Liu(刘福福), Lulu Pan(潘禄禄), Cunfang Feng(冯存芳), Bohan Zhang(张博涵), Daping He(何大平), and Shengxiang Wang(汪胜祥)
    Chin. Phys. B, 2024, 33 (3): 037506.   DOI: 10.1088/1674-1056/acfafa
    Abstract44)   HTML0)    PDF (2409KB)(33)      
    The flexible materials exhibit more favorable properties than most rigid substrates in flexibility, weight saving, mechanical reliability, and excellent environmental toughness. Particularly, flexible graphene film with unique mechanical properties was extensively explored in high frequency devices. Herein, we report the characteristics of structure and magnetic properties at high frequency of Co2FeAl thin film with different thicknesses grown on flexible graphene substrate at room temperature. The exciting finding for the columnar structure of Co2FeAl thin film lays the foundation for excellent high frequency property of Co2FeAl/flexible graphene structure. In-plane magnetic anisotropy field varying with increasing thickness of Co2FeAl thin film can be obtained by measurement of ferromagnetic resonance, which can be ascribed to the enhancement of crystallinity and the increase of grain size. Meanwhile, the resonance frequency which can be achieved by the measurement of vector network analyzer with the microstrip method increases with increasing thickness of Co2FeAl thin film. Moreover, in our case with graphene film, the resonance magnetic field is quite stable though folded for twenty cycles, which demonstrates that good flexibility of graphene film and the stability of high frequency magnetic property of Co2FeAl thin film grown on flexible graphene substrate. These results are promising for the design of microwave devices and wireless communication equipment.
    Effect of In doping on the evolution of microstructure, magnetic properties and corrosion resistance of NdFeB magnets
    Yuhao Li(李豫豪), Xiaodong Fan(范晓东), Zhi Jia(贾智), Lu Fan(范璐), Guangfei Ding(丁广飞), Xincai Liu(刘新才), Shuai Guo(郭帅), Bo Zheng(郑波), Shuai Cao(曹帅), Renjie Chen(陈仁杰), and Aru Yan(闫阿儒)
    Chin. Phys. B, 2024, 33 (3): 037508.   DOI: 10.1088/1674-1056/ad0e5c
    Abstract24)   HTML0)    PDF (11036KB)(25)      
    The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets. In this work, a small amount of In was added to NdFeB magnets by induction melting to systematically investigate its effect on the evolution of the microstructure, magnetic properties and corrosion resistance of NdFeB magnets. Microstructural analysis illustrated that minor In addition generated more grain boundary phases and an abundant amorphous phase at the triple-junction grain boundary. While the addition of In failed to enhance the magnetic isolation effect between adjacent matrix grains, its incorporation fortuitously elevated the electrochemical potential of the In-containing magnets. Besides, during corrosion, an In-rich precipitate phase formed, hindering the ingress of the corrosive medium into the magnet. Consequently, this significantly bolstered the corrosion resistance of the sintered NdFeB magnets. The phase formation, magnetic properties and corrosion resistance of In-doped NdFeB magnets are detailed in this work, which provides new prospects for the preparation of high-performance sintered NdFeB magnets.
    Investigation of reflection anisotropy induced by micropipe defects on the surface of a 4H-SiC single crystal using scanning anisotropy microscopy
    Wei Huang(黄威), Jinling Yu(俞金玲), Yu Liu(刘雨), Yan Peng(彭燕),Lijun Wang(王利军), Ping Liang(梁平), Tangsheng Chen(陈堂胜), Xiangang Xu(徐现刚), Fengqi Liu(刘峰奇), and Yonghai Chen(陈涌海)
    Chin. Phys. B, 2024, 33 (3): 037801.   DOI: 10.1088/1674-1056/acf27f
    Abstract37)   HTML0)    PDF (3370KB)(21)      
    Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy (SAM) system. The reflection anisotropy (RA) image with a 'butterfly pattern' is obtained around the micropipes by SAM. The RA image of the edge dislocations is theoretically simulated based on dislocation theory and the photoelastic principle. By comparing with the Raman spectrum, it is verified that the micropipes consist of edge dislocations. The different patterns of the RA images are due to the different orientations of the Burgers vectors. Besides, the strain distribution of the micropipes is also deduced. One can identify the dislocation type, the direction of the Burgers vector and the optical anisotropy from the RA image by using SAM. Therefore, SAM is an ideal tool to measure the optical anisotropy induced by the strain field around a defect.
    Band structures of strained kagome lattices
    Luting Xu(徐露婷) and Fan Yang(杨帆)
    Chin. Phys. B, 2024, 33 (2): 027101.   DOI: 10.1088/1674-1056/ad0291
    Abstract78)   HTML5)    PDF (1764KB)(81)      
    Materials with kagome lattices have attracted significant research attention due to their nontrivial features in energy bands. We theoretically investigate the evolution of electronic band structures of kagome lattices in response to uniaxial strain using both a tight-binding model and an antidot model based on a periodic muffin-tin potential. It is found that the Dirac points move with applied strain. Furthermore, the flat band of unstrained kagome lattices is found to develop into a highly anisotropic shape under a stretching strain along y direction, forming a partially flat band with a region dispersionless along ky direction while dispersive along kx direction. Our results shed light on the possibility of engineering the electronic band structures of kagome materials by mechanical strain.
    Angle-resolved photoemission study of NbGeSb with non-symmorphic symmetry
    Huan Ma(马欢), Ning Tan(谭宁), Xuchuan Wu(吴徐传), Man Li(李满), Yiyan Wang(王义炎), Hongyan Lu(路洪艳), Tianlong Xia(夏天龙), and Shancai Wang(王善才)
    Chin. Phys. B, 2024, 33 (2): 027102.   DOI: 10.1088/1674-1056/ad0ccf
    Abstract92)   HTML0)    PDF (8717KB)(68)      
    We investigate the electronic structure of NbGeSb with non-symmorphic symmetry. We employ angle-resolved photoemission spectroscopy (ARPES) to observe and identify the bulk and surface states over the Brillouin zone. By utilizing high-energy photons, we identify the bulk Fermi surface and bulk nodal line along the direction $X$-$R$, while the Fermi surface of the surface state is observed by using low-energy photons. We observe the splitting of surface bands away from the high-symmetry point $\overline{{X}}$. The density functional theory calculations on bulk and 1 to 5-layer slab models, as well as spin textures of NbGeSb, verify that the band splitting could be attributed to the Rashba-like spin-orbit coupling caused by space-inversion-symmetry breaking at the surface. These splitted surface bands cross with each other, forming two-dimensional Weyl-like crossings that are protected by mirror symmetry. Our findings provide insights into the two-dimensional topological and symmetry-protected band inversion of surface states.
    Spin transport characteristics modulated by the GeBi interlayer in Y3Fe5O12/GeBi/Pt heterostructures
    Mingming Li(李明明), Lei Zhang(张磊), Lichuan Jin(金立川), and Haizhong Guo(郭海中)
    Chin. Phys. B, 2024, 33 (2): 027201.   DOI: 10.1088/1674-1056/ace3aa
    Abstract59)   HTML0)    PDF (1360KB)(22)      
    For the past few years, germanium-based semiconductor spintronics has attracted considerable interest due to its potential for integration into mainstream semiconductor technology. The main challenges in the development of modern semiconductor spintronics are the generation, detection, and manipulation of spin currents. Here, the transport characteristics of a spin current generated by spin pumping through a GeBi semiconductor barrier in Y3Fe5O12/GeBi/Pt heterostructures were investigated systematically. The effective spin-mixing conductance and inverse spin Hall voltage to quantitatively describe the spin transport characteristics were extracted. The spin-injection efficiency in the Y3Fe5O12/GeBi/Pt heterostructures is comparable to that of the Y3Fe5O12/Pt bilayer, and the inverse spin Hall voltage exponential decays with the increase in the barrier thickness. Furthermore, the band gap of the GeBi layer was tuned by changing the Bi content. The spin-injection efficiency at the YIG/semiconductor interface and the spin transportation within the semiconductor barrier are related to the band gap of the GeBi layer. Our results may be used as guidelines for the fabrication of efficient spin transmission structures and may lead to further studies on the impacts of different kinds of barrier materials.
    Light-modulated graphene-based φ0 Josephson junction and -φ0 to φ0 transition
    Renxiang Cheng(程任翔), Miao Yu(于苗), Hong Wang(汪洪), Deliang Cao(曹德亮), Xingao Li(李兴鳌), Fenghua Qi(戚凤华), and Xingfei Zhou(周兴飞)
    Chin. Phys. B, 2024, 33 (2): 027302.   DOI: 10.1088/1674-1056/ad04c5
    Abstract34)   HTML0)    PDF (1149KB)(60)      
    We investigate the chiral edge states-induced Josephson current-phase relation in a graphene-based Josephson junction modulated by the off-resonant circularly polarized light and the staggered sublattice potential. By solving the Bogoliubov-de Gennes equation, a $\varphi_{0}$ Josephson junction is induced in the coaction of the off-resonant circularly polarized light and the staggered sublattice potential, which arises from the fact that the center of-mass wave vector of Cooper pair becomes finite and the opposite center of-mass wave vector to compensate is lacking in the nonsuperconducting region. Interestingly, when the direction of polarization of light is changed, $-\varphi_{0}$ to $\varphi_{0}$ transition generates, which generalizes the concept of traditional $0$-$\pi$ transition. Our findings provide a purely optical way to manipulate a phase-controllable Josephson device and guidelines for future experiments to confirm the presence of graphene-based $\varphi_{0}$ Josephson junction.
    Disorder effects in NbTiN superconducting resonators
    Wei-Tao Lyu(吕伟涛), Qiang Zhi(支强), Jie Hu(胡洁), Jing Li(李婧), and Sheng-Cai Shi(史生才)
    Chin. Phys. B, 2024, 33 (2): 027401.   DOI: 10.1088/1674-1056/ad03dc
    Abstract55)   HTML0)    PDF (1299KB)(14)      
    Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap ($\varDelta$), critical temperature ($T_{\rm c}$), and quasiparticle density of states (QDOS) distribution, however, deviate from the classical BCS theory due to the disorder effects. The Usadel equation, which takes account of elastic scattering, non-elastic scattering, and electro-phonon coupling, can be applied to explain and describe these deviations. This paper presents numerical simulations of the disorder effects based on the Usadel equation to investigate their effects on the $\varDelta $, $T_{\rm c}$, QDOS distribution, and complex conductivity of the NbTiN film. Furthermore, NbTiN superconducting resonators with coplanar waveguide (CPW) structures are fabricated and characterized at different temperatures to validate our numerical simulations. The pair-breaking parameter $\alpha $ and the critical temperature in the pure state $T_{\rm c}^{\rm P}$ of our NbTiN film are determined from the experimental results and numerical simulations. This study has significant implications for the development of low-temperature detectors made of disordered superconducting materials.
    Oscillation of Dzyaloshinskii-Moriya interaction driven by weak electric fields
    Runze Chen(陈润泽), Anni Cao(曹安妮), Xinran Wang(王馨苒), Yang Liu(柳洋), Hongxin Yang(杨洪新), and Weisheng Zhao(赵巍胜)
    Chin. Phys. B, 2024, 33 (2): 027501.   DOI: 10.1088/1674-1056/ad0f85
    Abstract71)   HTML1)    PDF (2423KB)(49)      
    Dzyaloshinskii-Moriya interaction (DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall (DW) and skyrmions. It has been reported that the interfacial DMI originating from Rashba spin-orbit coupling (SOC) can be linearly tuned with strong external electric fields. In this work, we experimentally demonstrate that the strength of DMI exhibits rapid fluctuations, ranging from 10% to 30% of its original value, as a function of applied electric fields in Pt/Co/MgO heterostructures within the small field regime (<10-2 V/nm). Brillouin light scattering (BLS) experiments have been performed to measure DMI, and first-principles calculations show agreement with this observation, which can be explained by the variation in orbital hybridization at the Co/MgO interface in response to the weak electric fields. Our results on voltage control of DMI (VCDMI) suggest that research related to the voltage control of magnetic anisotropy for spin-orbit torque or the motion control of skyrmions might also have to consider the role of the external electric field on DMI as small voltages are generally used for the magnetoresistance detection.
    Magnetic proximity effect in the two-dimensional ε-Fe2O3/NbSe2 heterojunction
    Bingyu Che(车冰玉), Guojing Hu(胡国静), Chao Zhu(朱超), Hui Guo(郭辉), Senhao Lv(吕森浩), Xuanye Liu(刘轩冶), Kang Wu(吴康), Zhen Zhao(赵振), Lulu Pan(潘禄禄), Ke Zhu(祝轲), Qi Qi(齐琦), Yechao Han(韩烨超), Xiao Lin(林晓), Zi'an Li(李子安), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Zheng Liu(刘政), Jiadong Zhou(周家东), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧)
    Chin. Phys. B, 2024, 33 (2): 027502.   DOI: 10.1088/1674-1056/ad09d2
    Abstract73)   HTML1)    PDF (2719KB)(65)      
    Two-dimensional (2D) magnet/superconductor heterostructures can promote the design of artificial materials for exploring 2D physics and device applications by exotic proximity effects. However, plagued by the low Curie temperature and instability in air, it is hard to realize practical applications for the reported layered magnetic materials at present. In this paper, we developed a space-confined chemical vapor deposition method to synthesize ultrathin air-stable ε-Fe2O3 nanosheets with Curie temperature above 350 K. The ε-Fe2O3/NbSe2 heterojunction was constructed to study the magnetic proximity effect on the superconductivity of the NbSe2 multilayer. The electrical transport results show that the subtle proximity effect can modulate the interfacial spin-orbit interaction while undegrading the superconducting critical parameters. Our work paves the way to construct 2D heterojunctions with ultrathin nonlayered materials and layered van der Waals (vdW) materials for exploring new physical phenomena.
ISSN 1674-1056   CN 11-5639/O4

Current issue

, Vol. 33, No. 3

Previous issues

1992 - present