%A Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃) %T Design and simulation of AlN-based vertical Schottky barrier diodes %0 Journal Article %D 2021 %J Chin. Phys. B %R 10.1088/1674-1056/abe0c7 %P 67305-067305 %V 30 %N 6 %U {https://cpb.iphy.ac.cn/CN/abstract/article_123614.shtml} %8 2021-05-18 %X The key parameters of vertical AlN Schottky barrier diodes (SBDs) with variable drift layer thickness (DLT) and drift layer concentration (DLC) are investigated. The specific on-resistance (Ron,sp) decreased to 0.5 mΩ·cm2 and the breakdown voltage (VBR) decreased from 3.4 kV to 1.1 kV by changing the DLC from 1015 cm-3 to 3×1016 cm-3. The VBR increases from 1.5 kV to 3.4 kV and the Ron,sp also increases to 12.64 mΩ·cm2 by increasing DLT from 4-μ to 11-μ. The VBR enhancement results from the increase of depletion region extension. The Baliga's figure of merit (BFOM) of 3.8 GW/cm2 was obtained in the structure of 11-μ DLT and 1016 cm-3 DLC without FP. When DLT or DLC is variable, the consideration of the value of BFOM is essential. In this paper, we also present the vertical AlN SBD with a field plate (FP), which decreases the crowding of electric field in electrode edge. All the key parameters were optimized by simulating based on Silvaco-ATLAS.