Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 108701    DOI: 10.1088/1674-1056/ad6254
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Membrane tension evolution and mechanical regulation of melittin-induced membrane poration

Wanting Zhang(张婉婷)1,2,†, Rong Xu(徐榕)1,2,†, Wendong Ma(马文东)1,3,†, Zhao Lin(林召)1,4, Kai Yang(杨恺)1,‡, and Bing Yuan(元冰)2,§
1 Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China;
2 Songshan Lake Materials Laboratory, Dongguan 523808, China;
3 Biomedicine Discovery Institute, Infection & Immunity Program, Monash University, Melbourne, Australia;
4 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Membrane tension plays a crucial role in various fundamental cellular processes, with one notable example being the T cell-mediated elimination of tumor cells through perforin-induced membrane perforation by amplifying cellular force. However, the mechanisms governing the regulation of biomolecular activities at the cell interface by membrane tension remain elusive. In this study, we investigated the correlation between membrane tension and poration activity of melittin, a prototypical pore-forming peptide, using dynamic giant unilamellar vesicle leakage assays combined with flickering tension analysis, molecular dynamics simulations, and live cell assays. The results demonstrate that an increase in membrane tension enhances the activity of melittin, particularly near its critical pore-forming concentration. Moreover, peptide actions such as binding, insertion, and aggregation in the membrane further influence the evolution of membrane tension. Live cell experiments reveal that artificially enhancing membrane tension effectively enhances melittin's ability to induce pore formation and disrupt membranes, resulting in up to a ten-fold increase in A549 cell mortality when exposed to a concentration of 2.0-μg$\cdot$mL$^{-1}$ melittin. Our findings elucidate the relationship between membrane tension and the mechanism of action as well as pore-forming efficiency of melittin, while providing a practical mechanical approach for regulating functional activity of molecules at the cell-membrane interface.
Keywords:  membrane tension      mechanical regulation      membrane poration      giant unilamellar vesicle leakage assay  
Received:  11 June 2024      Revised:  03 July 2024      Accepted manuscript online:  12 July 2024
PACS:  87.16.D- (Membranes, bilayers, and vesicles)  
  87.15.K- (Molecular interactions; membrane-protein interactions)  
  87.15.ap (Molecular dynamics simulation)  
  87.15.La (Mechanical properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274307, 32230063, 21774092, and 12347102) and the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2023A1515011610).
Corresponding Authors:  Kai Yang, Bing Yuan     E-mail:  yangkai@suda.edu.cn;yuanbing@sslab.org.cn

Cite this article: 

Wanting Zhang(张婉婷), Rong Xu(徐榕), Wendong Ma(马文东), Zhao Lin(林召), Kai Yang(杨恺), and Bing Yuan(元冰) Membrane tension evolution and mechanical regulation of melittin-induced membrane poration 2024 Chin. Phys. B 33 108701

[1] Keren K 2011 Proc. Natl. Acad. Sci. USA 108 14379
[2] Pontes B, Monzo P and Gauthier N C 2017 Semin. Cell Dev. Biol. 71 30
[3] Sitarska E and Diz-Munoz A 2020 Curr. Opin. Cell Biol. 66 11
[4] Pontes B, Monzo P, Gole L, Le Roux A L, Kosmalska A J, Tam Z Y, Luo W, Kan S, Viasnoff V, Roca-Cusachs P, Tucker-Kellogg L and Gauthier N C 2017 J. Cell Biol. 216 2959
[5] Basu R, Whitlock B M, Husson J, Le Floc’h A, Jin W, Oyler-Yaniv A, Dotiwala F, Giannone G, Hivroz C, Biais N, Lieberman J, Kam L C and Huse M 2016 Cell 165 100
[6] Skotland T, Kavaliauskiene S and Sandvig K 2020 Cancer Metastasis Rev. 39 343
[7] Golstein P and Griffiths G M 2018 Nat. Rev. Immunol. 18 527
[8] Lei K, Kurum A, Kaynak M, Bonati L, Han Y, Cencen V, Gao M, Xie Y Q, Guo Y, Hannebelle M T M, Wu Y, Zhou G, Guo M, Fantner G E, Sakar M S and Tang L 2021 Nat. Biom. Engin. 5 1411
[9] Karal M A, Alam J M, Takahashi T, Levadny V and Yamazaki M 2015 Langmuir 31 3391
[10] Pageon S V, Govendir M A, Kempe D and Biro M 2018 Mol. Biol. Cell 29 1919
[11] Chen Y, Ju L, Rushdi M, Ge C and Zhu C 2017 Mol. Biol. Cell 28 3134
[12] Roffay C, Molinard G, Kim K, Urbanska M, Andrade V, Barbarasa V, Nowak P, Mercier V, Garcia-Calvo J, Matile S, Loewith R, Echard A, Guck J, Lenz M and Roux A 2021 Proc. Natl. Acad. Sci. USA 118 e2103228118
[13] Guo M, Pegoraro A F, Mao A, Zhou E H, Arany P R, Han Y, Burnette D T, Jensen M H, Kasza K E, Moore J R, Mackintosh F C, Fredberg J J, Mooney D J, Lippincott-Schwartz J and Weitz D A 2017 Proc. Natl. Acad. Sci. USA 114 E8618
[14] Sinha B, Koster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, Stan R V, Butler-Browne G, Vedie B, Johannes L, Morone N, Parton R G, Raposo G, Sens P, Lamaze C and Nassoy P 2011 Cell 144 402
[15] Pan L, Zhang P, Hu F, Yan R, He M, Li W, Xu J and Xu K 2019 Adv. Sci. (Weinh) 6 1900865
[16] Guilak F, Erickson G R and Ting-Beall H P 2002 Biophys. J. 82 720
[17] Raucher D and Sheetz M P 1999 Biophys. J. 77 1992
[18] Hamill O P and Martinac B 2001 Physiol. Rev. 81 685
[19] Diz-Munoz A, Fletcher D A and Weiner O D 2013 Trend. Cell Biol. 23 47
[20] Yang L, Harroun T A, Weiss T M, Ding L and Huang H W 2001 Biophys. J. 81 1475
[21] Lee M T, Sun T L, Hung W C and Huang H W 2013 Proc. Natl. Acad. Sci. USA 110 14243
[22] Yang Z, Choi H and Weisshaar J C 2018 Biophys. J. 114 368
[23] Guha S, Ghimire J, Wu E and Wimley W C 2019 Chem. Rev. 119 6040
[24] Popescu G, Ikeda T, Goda K, Best-Popescu C A, Laposata M, Manley S, Dasari R R, Badizadegan K and Feld M S 2006 Phys. Rev. Lett. 97 218101
[25] Yoon Y Z, Hong H, Brown A, Kim D C, Kang D J, Lew V L and Cicuta P 2009 Biophys. J. 97 1606
[26] Li W, Ma Y, Ou L, Xu C, Wei Y, Yang K and Yuan B 2024 J. Hazard. Mater. 465 133382
[27] Rautu S A, Orsi D, Di Michele L, Rowlands G, Cicuta P and Turner M S 2017 Soft Matter 13 3480
[28] Faizi H A, Frey S L, Steinkuhler J, Dimova R and Vlahovska P M 2019 Soft Matter 15 6006
[29] Rawicz W, Olbrich K C, McIntosh T, Needham D and Evans E 2000 Biophys. J. 79 328
[30] Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts M R, Smith J C, Kasson P M, van der Spoel D, Hess B and Lindahl E 2013 Bioinformatics 29 845
[31] Marrink S J, Risselada H J, Yefimov S, Tieleman D P and de Vries A H 2007 J. Phys. Chem. B 111 7812
[32] de Jong D H, Singh G, Bennett W F, Arnarez C, Wassenaar T A, Schafer L V, Periole X, Tieleman D P and Marrink S J 2013 J. Chem. Theory Comput. 9 687
[33] Berendsen H J C, Postma J P M, van Gunsteren W F, DiNola A and Haak J R 1984 J. Chem. Phys. 81 3684
[34] Koshiyama K and Wada S 2011 J. Biomech. 44 2053
[35] Losasso V, Hsiao Y W, Martelli F, Winn M D and Crain J 2019 Phys. Rev. Lett. 122 208103
[36] Hong J, Lu X, Deng Z, Xiao S, Yuan B and Yang K 2019 Molecules 24 1775
[37] Shillcock J C L R 2002 J. Chem. Phys. 117 5048
[38] Goetz R L, R. 1998 J. Chem. Phys. 108 7397
[39] Marquette A and Bechinger B 2018 Biomolecules 8 18
[40] Luther A, Urfer M, Zahn M, Muller M, Wang S Y, Mondal M, Vitale A, Hartmann J B, Sharpe T, Monte F L, Kocherla H, Cline E, Pessi G, Rath P, Modaresi S M, Chiquet P, Stiegeler S, Verbree C, Remus T, Schmitt M, Kolopp C, Westwood M A, Desjonqueres N, Brabet E, Hell S, LePoupon K, Vermeulen A, Jaisson R, Rithie V, Upert G, Lederer A, Zbinden P, Wach A, Moehle K, Zerbe K, Locher H H, Bernardini F, Dale G E, Eberl L, Wollscheid B, Hiller S, Robinson J A and Obrecht D 2019 Nature 576 452
[41] Raghuraman H and Chattopadhyay A 2007 Bioscience Rep. 27 189
[42] Liu J, Xiao S, Li J, Yuan B, Yang K and Ma Y 2018 Biochim. Biophys. Acta Biomembr. 1860 2234
[43] Zhang C, Ge Y, Lu X, Chen Z, Liu J, Zhang M, Yang K and Yuan B 2021 Carbon 180 67
[44] Yuan B, Liu J J, Deng Z X, Wei L, Li W W, Dou Y J, Chen Z L, Zhang C, Xia Y, Wang J, Zhang M L, Yang K, Ma Y Q and Kang Z H 2021 NPG Asia Mater. 13 18
[45] Xu C, Ma W, Wang K, He K, Chen Z, Liu J, Yang K and Yuan B 2020 J. Phys. Chem. Lett. 11 4834
[46] Sun S, Xia Y, Liu J, Dou Y, Yang K, Yuan B and Kang Z 2022 J Colloid Interface Sci. 609 707
[47] Parvez F, Alam J M, Dohra H and Yamazaki M 2018 Biochim. Biophys. Acta Biomembr. 1860 2262
[48] Shen C, Jiang L, Long X, Dahl K N and Meng Q 2020 ACS Biomater. Science Engin. 6 352
[49] Ayee M A A and Levitan I 2018 Curr. Top. Membr. 81 97
[50] Zhong Q, Wu C X and Ma R 2023 Chin. Phys. B 32 088704
[51] Zhou Q, Wang P, Ma B B, Jiang Z Y and Zhu T 2022 Chin. Phys. B 31 098701
[52] Ikonen E 2008 Nat. Rev. Mol. Cell Biol. 9 125
[53] Biswas A, Kashyap P, Datta S, Sengupta T and Sinha B 2019 Biophys. J. 116 1456
[54] Chakraborty S, Doktorova M, Molugu T R, Heberle F A, Scott H L, Dzikovski B, Nagao M, Stingaciu L R, Standaert R F, Barrera F N, Katsaras J, Khelashvili G, Brown M F and Ashkar R 2020 Proc. Natl. Acad. Sci. USA 117 21896
[55] Raphael Zidovetzki I L 2007 Biochim. Biophys. Acta 1768 1311
[56] Thottacherry J J, Kosmalska A J, Kumar A, Vishen A S, EloseguiArtola A, Pradhan S, Sharma S, Singh P P, Guadamillas M C, Chaudhary N, Vishwakarma R, Trepat X, Del Pozo M A, Parton R G, Rao M, Pullarkat P, Roca-Cusachs P and Mayor S 2018 Nat. Commun. 9 4217
[57] Kabouridis P S, Janzen J, Magee A L and Ley S C 2000 Eur. J. Immunol. 30 954
[58] Yang W, Bai Y, Xiong Y, Zhang J, Chen S, Zheng X, Meng X, Li L, Wang J, Xu C, Yan C, Wang L, Chang C C, Chang T Y, Zhang T, Zhou P, Song B L, Liu W, Sun S C, Liu X, Li B L and Xu C 2016 Nature 531 651
[59] Chubinskiy-Nadezhdin V I, Efremova T N, Khaitlina S Y and Morachevskaya E A 2013 Cell Biol. Int. 37 617
[60] Xu R, Zhang W, Jin T, Tu W, Xu C, Wei Y, Han W, Yang K and Yuan B 2024 ACS Appl. Mater. Interfaces 16 6813
[1] Regulation of the intermittent release of giant unilamellar vesicles under osmotic pressure
Qi Zhou(周琪), Ping Wang(王平), Bei-Bei Ma(马贝贝), Zhong-Ying Jiang(蒋中英), and Tao Zhu(朱涛). Chin. Phys. B, 2022, 31(9): 098701.
No Suggested Reading articles found!