Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 020308    DOI: 10.1088/1674-1056/25/2/020308
GENERAL Prev   Next  

Efficient entanglement concentration for arbitrary less-entangled NOON state assisted by single photons

Lan Zhou(周澜)1,2 and Yu-Bo Sheng(盛宇波)2,3
1. College of Mathematics and Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2. Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3. Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  

We put forward two efficient entanglement concentration protocols (ECPs) for arbitrary less-entangled NOON state. Both ECPs only require one pair of less-entangled NOON state and an auxiliary photon. In the first ECP, the auxiliary photon is shared by two parties, while in the second ECP, the auxiliary photon is only possessed by one party, which can increase the practical success probability by avoiding the transmission loss and simplify the operations. Moreover, both ECPs can be used repeatedly to get a high success probability. Based on the above features, our two ECPs, especially the second one, may be useful in the quantum information processing.

Keywords:  quantum communication      NOON state      entanglement concentration      cross-Kerr nonlinearity  
Received:  20 July 2015      Revised:  17 September 2015      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 61401222), the Qing Lan Project of Jiangsu Province of China, the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20151502), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Corresponding Authors:  Yu-Bo Sheng     E-mail:  shengyb@njupt.edu.cn

Cite this article: 

Lan Zhou(周澜) and Yu-Bo Sheng(盛宇波) Efficient entanglement concentration for arbitrary less-entangled NOON state assisted by single photons 2016 Chin. Phys. B 25 020308

[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
[3] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[4] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[5] Wei H R and Deng F G 2013 Phys. Rev. A 87 022305
[6] Feng G R, Xu G F and Long G L 2013 Phys. Rev. Lett. 110 190501
[7] Wei H R and Deng F G 2013 Opt. Express 21 17671
[8] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[9] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[10] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[11] Chang Y, Xu C X, Zhang S B and Yan L 2014 Chin. Sci. Bull. 59 2541
[12] Liu Y 2013 Chin. Sci. Bull. 58 2927
[13] Liu Y and Ou-Yang X P 2013 Chin. Sci. Bull. 58 2329
[14] Su X L, Jia X J, Xie C D and Peng K C 2014 Sci. Chin.-Phys. Mech. Astron. 57 1210
[15] Zou X F and Qiu D W 2014 Sci. Chin.-Phys. Mech. Astron. 57 1696
[16] Chang Y, Zhang S B, Yan L L and Han G H 2015 Chin. Phys. B 24 080306
[17] Chang H H, Jino H, Jong I L and Hyung J Y 2014 Chin. Phys. B 23 090309
[18] Ji Y Q, Jin Z, Zhu A D, Wang H F and Zhang S 2014 Chin. Phys. B 23 050306
[19] Zhao J J, Guo X M and Wang X Y 2013 Chin. Phys. Lett. 30 060302
[20] Wu H Z and Yang Z B 2014 Chin. Phys. Lett. 31 024206
[21] Tang S Q, Yuan J B, Wang X W and Kuang L M 2015 Chin. Phys. Lett. 32 040303
[22] Gu B, Huang Y G, Fang X, and Chen Y L 2013 Int. J. Theor. Phys. 52 4461
[23] Huelga S F, Macchiavello C, Pellizzari T and Ekert A K 1997 Phys. Rev. Lett. 79 3865
[24] Resch K J, Pregnell K L, Prevedel R, Gilchrist A, Pryde G J, ÓBrien J L and White A G 2007 Phys. Rev. Lett. 98 223601
[25] Mitchell M W, Lundeen J S and Steinberg A M 2004 Nature 429 161
[26] Walther P, Pan J W, Aspelmeyer M, Ursin R, Gasparoni S and Zeilinger A 2004 Nature 429 158
[27] Nagata T, Okamoto R, ÓBrien J L, Sasaki K and Takeuchi S 2007 Science 316 726
[28] Hua M, Tao M J and Deng F G 2014 Chin. Sci. Bull. 59 2829
[29] Bohmann M, Sperling J and Vogel W 2015 Phys. Rev. A 91 042332
[30] Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P and Dowling J P 2000 Phys. Rev. Lett. 85 2733
[31] Bollinger J J, Itano W M, Wineland D J and Heinzen D J 1996 Phys. Rev. A 54 R4649
[32] Eckert K, Hyllus P, Bruss D, et al. 2006 Phys. Rev. A 73 013814
[33] D'ngelo M, Chekhova M V and Shih Y 2001 Phys. Rev. Lett. 87 013602
[34] Sun F W, Ou Z Y and Guo G C 2006 Phys. Rev. A 73 032308
[35] Liu B and Ou Z Y 2010 Phys. Rev. A 81 033823
[36] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[37] Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194
[38] Shi B S, Jiang Y K and Guo G C 2000 Phys. Rev. A 62 054301
[39] Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301
[40] Yamamoto T, Koashi M, Imoto N 2001 Phys. Rev. A 64 012304
[41] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
[42] Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
[43] Sheng Y B, Zhou L and Zhao S M 2012 Phys. Rev. A 85 042302
[44] Zhou L, Sheng Y B, Cheng W W, Gong L Y and Zhao S M 2013 Quantum. Inform. Process. 12 1307
[45] Deng F G 2012 Phys. Rev. A 85 022311
[46] Wang C 2012 Phys. Rev. A 86 012323
[47] Sheng Y B, Zhou L, Wang L and Zhao S M 2013 Quantum. Inform. Process. 12 1885
[48] Zhou L, Sheng Y B, Cheng W W, Gong L Y and Zhao S M 2013 J. Opt. Soc. Am. B 30 71
[49] Zhou L 2013 Quantum Inf. Process. 12 2087
[50] Zhou L and Sheng Y B 2014 Opt. Commun. 313 217
[51] Zhou L, Sheng Y B and Zhao S M 2013 Chin. Phys. B 22 020307
[52] Ren B C, Du F F and Deng F G 2013 Phys. Rev. A 88 012302
[53] Ren B C and Deng F G 2013 Laser Phys. Lett. 10 115201
[54] Sheng Y B and Zhou L 2013 Entropy 15 1776
[55] Du F F and Deng F G 2015 Sci. China-Phys. Mech. Astron. 58 040303
[56] Zhao J, Zheng C H, Shi P, Ren C N, Gu Y J 2014 Opt. Commun. 2 32
[57] Gu B, Huang Y G, Fang X and Wang H B 2014 Int. J. Theor. Phys. 53 1337
[58] Sheng Y B, Feng Z F, Ou-Yang Y, Qu C C and Zhou L 2014 Chin. Phys. Lett. 31 050303
[59] Wang G Y, Li T and Deng F G 2015 Quantum Inform. Process. 14 1305
[60] Sheng Y B, Zhou L, Cheng W W, Gong L Y, Zhao S M and Zheng B Y 2012 Chin. Phys. B 21 030307
[61] Feng Z F, Ou-Yang Y, Zhou L, Sheng Y B 2015 Opt. Commun. 340 80
[62] Cao C, Ding H, Li Y, Wang T J, Mi S C, Zhang R, Wang C 2015 Quantum Inform. Process. 14 1265
[63] Cao C, Wang T J, Zhang R and Wang C 2015 Laser Phys. Lett. 12 036001
[64] Wang C, Cao C, He L Y and Zhang C L 2014 Quantum Inform. Process. 13 1025
[65] Li X H and Ghose S 2015 Phys. Rev. A 91 062302
[66] Zhou L 2014 Chin. Phys. B 23 050308
[67] Sheng Y B, Ou-Yang Y, Zhou L and Wang L 2014 Quantum Inform. Process. 13 1595
[68] Sheng Y B, Pan J, Guo R, Zhou L and Wang L 2015 Sci. China-Phys. Mech. Astron. 58 060301
[69] Li T and Deng F G 2014 Int. J. Theor. Phys. 53 3026
[70] Shukla C, Banerjee A and Pathak A 2015 Quantum Inform. Process. 14 2077
[71] Choudhury B and Dhara A 2013 Quantum Inform. Process. 12 2577
[72] Si B, Wen J J, Cheng L Y, Wang H F, Zhang S and Yeon K H 2014 Int. J. Theor. Phys. 53 80
[73] Choudhury B S and Dhara A. 2013 Int. J. Theor. Phys. 52 3965
[74] Fan L L, Xia Y and Song J 2014 Quantum Inform. Process. 13 1967
[75] Liu J, Zhao S Y, Zhou L and Sheng Y B 2014 Chin. Phys. B 23 020313
[76] Sheng Y B and Zhou L 2013 Chin. Phys. B 22 110303
[77] Li X H and Ghose S 2014 Laser Phys. Lett. 11 125201
[78] Gu B 2012 J. Opt. Soc. Am. B 29 1685
[79] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[80] Lin Q and Li J 2009 Phys. Rev. A 79 022301
[81] Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302
[82] Xia Y, Chen Q Q, Song J and Song H S 2012 J. Opt. Soc. Am. B 29 1029
[83] He B, Ren Y and Bergou J A 2009 Phys. Rev. A 79 052323
[84] He B and Scherer A 2012 Phys. Rev. A 85 033814
[85] He B, Lin Q and Simon C 2011 Phys. Rev. A 83 053826
[86] Xiu X M, Dong L, Shen H Z, Gao Y J and Yi X X 2014 Quantum Inform. Process. 14 236
[87] Dong L, Xiu X M, Shen H Z, Gao Y J and Yi X X 2013 Opt. Commun. 308 304
[88] Heo J, Hong C H, Lim J I and Yang H J 2015 Chin. Phys. B 24 050304
[89] Jeong H 2005 Phys. Rev. A 72 034305
[90] Lin Q and He B 2015 Sci. Rep. 5 12792
[91] Yan X, Yu Y F and Zhang Z M 2014 Chin. Phys. B 23 060306
[92] Wang Z H, Zhu L, Su S L, Guo Q, Cheng L Y, Zhu A D, and Zhang S 2013 Chin. Phys. B 22 090309
[93] Munro W J, Nemoto K, Beausoleil R G and Spiller T P 2005 Phys. Rev. A 71 033819
[94] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
[95] Osorio C I, Bruno N, Sangouard N, Zbinden H, Gisin N and Thew R T 2012 Phys. Rev. A 86 023815
[96] Lin Q and He B 2009 Phys. Rev. A 80 042310
[97] Gea-Banacloche J 2010 Phys. Rev. A 81 043823
[98] Shapiro J H 2006 Phys. Rev. A 73 062305
[99] Shapiro J H and Razavi M 2007 New J. Phys. 9 16
[100] Jeong H 2006 Phys. Rev. A 73 052320
[101] Barrett S D and Milburn G J 2006 Phys. Rev. A 74 060302
[102] Feizpour A, Xing X, and Steinberg A M 2011 Phys. Rev. Lett. 107 133603
[103] Hofmann H F, Kojima K, Takeuchi S, and Sasaki K 2003 J. Opt. B: Quantum Semiclass. Opt. 5 218
[104] Zhu C and Huang G 2011 Opt. Express 19 23364
[105] Hoi I C, Kockum A F, Palomaki T, Stace T M, Fan B, Tornberg L, Sathyamoorthy S R, Johansson G, Delsing P, and Wilson C M 2013 Phys. Rev. Lett. 111 053601
[106] He B, Sharypov A V, Sheng J, Simon C, and Xiao M 2014 Phys. Rev. Lett. 112 133606
[1] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[2] Heralded path-entangled NOON states generation from a reconfigurable photonic chip
Xinyao Yu(于馨瑶), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Miaomiao Yu(余苗苗), Chao Wu(吴超),Shichuan Xue(薛诗川), Qilin Zheng(郑骑林), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(6): 064203.
[3] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[4] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[5] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[6] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[7] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[8] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[9] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[10] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[11] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[12] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
[13] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[14] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[15] Cancelable remote quantum fingerprint templates protection scheme
Qin Liao(廖骎), Ying Guo(郭迎), Duan Huang(黄端). Chin. Phys. B, 2017, 26(9): 090302.
No Suggested Reading articles found!