|
|
Precision calculation of fine structure in helium and Li+ |
Zhang Pei-Pei (张佩佩)a b, Zhong Zhen-Xiang (钟振祥)a, Yan Zong-Chao (严宗朝)a c, Shi Ting-Yun (史庭云)a |
a Division of Theoretical and Interdisciplinary Research, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, and Center for Cold Atom Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
b University of Chinese Academy of Sciences, Beijing 100049, China;
c Department of Physics, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada |
|
|
Abstract The fine structure constant α can be extracted from high-precision spectroscopy of the 23PJ fine structure splittings in helium and light helium-like ions. In this work, the 23PJ fine structure splittings of helium and Li+ ion are calculated, including relativistic and QED corrections of order mα4, mα4(m/M), mα5, mα5(m/M), and Douglas-Kroll operators of mα6 and mα6(m/M), which provide an independent verification for the previous calculations performed by Drake [Can. J. Phys. 80 1195 (2002)] and by Pachucki and Yerokhin [Phys. Rev. A 79 062516 (2009); Phys. Rev. Lett. 104 070403 (2010); Can. J. Phys. 89 1139 (2011)]. The results of the three groups agree with each other.
|
Received: 24 April 2014
Revised: 23 June 2014
Accepted manuscript online:
|
PACS:
|
31.15.ac
|
(High-precision calculations for few-electron (or few-body) atomic systems)
|
|
37.10.De
|
(Atom cooling methods)
|
|
31.15.ap
|
(Polarizabilities and other atomic and molecular properties)
|
|
31.15.bw
|
(Coupled-cluster theory)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB832803). |
Corresponding Authors:
Zhong Zhen-Xiang
E-mail: zxzhong@wipm.ac.cn
|
Cite this article:
Zhang Pei-Pei (张佩佩), Zhong Zhen-Xiang (钟振祥), Yan Zong-Chao (严宗朝), Shi Ting-Yun (史庭云) Precision calculation of fine structure in helium and Li+ 2015 Chin. Phys. B 24 033101
|
[1] |
Schwartz C 1964 Phys. Rev. 134 A1181
|
[2] |
Douglas M H and Kroll N M 1974 Ann. Phys. 82 89
|
[3] |
Hambro L 1972 Phys. Rev. A 5 2027
|
[5] |
Hambro L 1973 Phys. Rev. A 7 479
|
[6] |
Lewis M L and Serafino P H 1978 Phys. Rev. A 18 867
|
[7] |
Yan Z C and Drake G W F 1994 Can. J. Phys. 72 822
|
[8] |
Yan Z C and Drake G W F 1995 Phys. Rev. Lett. 74 4791
|
[9] |
Yan Z C 1994 Order α^6mc^2 Contributions to the Fine Structure Splittings of Helium and Helium-like Ions (Ph.D. Thesis) (Windsor: University of Windsor)
|
[10] |
Zhang T 1996 Phys. Rev. A 53 3896
|
[11] |
Zhang T 1996 Phys. Rev. A 54 1252
|
[12] |
Zhang T and Drake G W F 1996 Phys. Rev. A 54 4882
|
[13] |
Zhang T, Yan Z C and Drake G W F 1996 Phys. Rev. Lett. 77 1715
|
[14] |
Pachucki K and Sapirstein J 2000 J. Phys. B: At. Mol. Opt. Phys. 33 5297
|
[15] |
Drake G W F 2002 Can. J. Phys. 80 1195
|
[16] |
Minardi F, Bianchini G, Pastor P C, Giusfredi G, Pavone F S and Inguscio M 1999 Phys. Rev. Lett. 82 1112
|
[17] |
Castillega J, Livingston D and Hessels E A 2000 Phys. Rev. Lett. 84 4321
|
[18] |
Storry C H, George M C and Hessels E A 2000 Phys. Rev. Lett. 84 3274
|
[19] |
George M C, Lombardi L D and Hessels E A 2001 Phys. Rev. Lett. 87 173002
|
[20] |
Pachucki K and Sapirstein J 2002 J. Phys. B: At. Mol. Opt. Phys. 35 1783
|
[21] |
Pachucki K and Sapirstein J 2003 J. Phys. B: At. Mol. Opt. Phys. 36 803
|
[22] |
Pachucki K 2006 Phys. Rev. Lett. 97 013002
|
[23] |
Zelevinsky T, Farkas D and Gabrielse G 2005 Phys. Rev. Lett. 95 203001
|
[24] |
Giusfredi G, Cancio Pastor P, De Natale P, Mazzotti D, de Mauro C, Fallani L, Hagel G, Krachmalnicoff V and Inguscio M 2005 Can. J. Phys. 83 301
|
[25] |
Pachucki K and Yerokhin V A 2010 Phys. Rev. Lett. 104 070403
|
[26] |
Borbely J S, George M C, Lombardi L D, Weel M, Fitzakerley D W and Hessels E A 2009 Phys. Rev. A 79 060503(R)
|
[27] |
Smiciklas M and Shiner D 2010 Phys. Rev. Lett. 105 123001
|
[28] |
Rong H, Grafström S, Kowalski J, zu Putlitz G, Jastrezebski W and Neumann R 1993 Z. Phys. D 25 337
|
[29] |
Riis E, Sinclair A G, Poulsen O, Drake G W F, Rowley W R C and Levick A P 1994 Phys. Rev. A 49 207
|
[30] |
Clarke J J and van Wijngaarden W A 2003 Phys. Rev. A 67 012506
|
[31] |
van Wijngaarden W A and Noble G A 2008 Lect. Notes Phys. 745 111
|
[32] |
Qing B, Chen S H, Gao X and Li J M 2008 Chin. Phys. Lett. 25 2448
|
[33] |
Duan Y S, Liu Y X and Zhang L J 2004 Chin. Phys. Lett. 21 1714
|
[34] |
Korobov V I 2000 Phys. Rev. A 61 064503
|
[35] |
Bethe H A and Salpeter E E 1957 Quantum Mechanics of One- and Two-electron Atoms (Berlin: Springer-Verlag OHG) p. 181
|
[36] |
Pachucki K 1999 J. Phys. B 32 137
|
[37] |
Daley J, Douglas M, Hambro L and Kroll N M 1972 Phys. Rev. Lett. 29 12
|
[38] |
Pachucki K and Yerokhin V A 2009 Phys. Rev. A 79 062516
|
[39] |
Pachucki K and Yerokhin V A 2011 Can. J. Phys. 89 1139
|
[40] |
Pachucki K and Yerokhin V A 2011 J. Phys. Conf. Ser. 264 012007
|
[41] |
Mohr P J, Taylor B N and Newell D B 2012 Rev. Mod. Phys. 84 1527
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|