Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 010202    DOI: 10.1088/1674-1056/24/1/010202
GENERAL Prev   Next  

Exact solutions and residual symmetries of the Ablowitz-Kaup-Newell-Segur system

Liu Ping (刘萍)a b, Zeng Bao-Qing (曾葆青)a b, Yang Jian-Rong (杨建荣)c, Ren Bo (任博)d
a College of Electron and Information Engineering, University of Electronic Science and Technologyof China Zhongshan Institute, Zhongshan 528402, China;
b School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China;
c Department of Physics and Electronics, Shangrao Normal University, Shangrao 334001, China;
d Institute of Nonlinear Science, Shaoxing University, Shaoxing 312000, China
Abstract  

The residual symmetries of the Ablowitz-Kaup-Newell-Segur (AKNS) equations are obtained by the truncated Painlevé analysis. The residual symmetries for the AKNS equations are proved to be nonlocal and the nonlocal residual symmetries are extended to the local Lie point symmetries of a prolonged AKNS system. The local Lie point symmetries of the prolonged AKNS equations are composed of the residual symmetries and the standard Lie point symmetries, which suggests that the residual symmetry method is a useful complement to the classical Lie group theory. The calculation on the symmetries shows that the enlarged equations are invariant under the scaling transformations, the space-time translations, and the shift translations. Three types of similarity solutions and the reduction equations are demonstrated. Furthermore, several types of exact solutions for the AKNS equations are obtained with the help of the symmetry method and the Bäcklund transformations between the AKNS equations and the Schwarzian AKNS equation.

Keywords:  residual symmetries      Ablowitz-Kaup-Newell-Segur equation      exact solution            cklund transformation  
Received:  13 April 2014      Revised:  06 August 2014      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.20.Sv (Lie algebras of Lie groups)  
  47.35.Fg (Solitary waves)  
  02.30.Ik (Integrable systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11305031, 11365017, and 11305106), the Natural Science Foundation of Guangdong Province, China (Grant No. S2013010011546), the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ13A050001), the Science and Technology Project Foundation of Zhongshan, China (Grant Nos. 2013A3FC0264 and 2013A3FC0334), and the Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province, China (Grant No. Yq2013205).

Corresponding Authors:  Liu Ping, Zeng Bao-Qing     E-mail:  liuping49@uestc.edu.cn;bqzeng@uestc.edu.cn

Cite this article: 

Liu Ping (刘萍), Zeng Bao-Qing (曾葆青), Yang Jian-Rong (杨建荣), Ren Bo (任博) Exact solutions and residual symmetries of the Ablowitz-Kaup-Newell-Segur system 2015 Chin. Phys. B 24 010202

[1] Korteweg D J and de Vries G 1895 Philos. Mag. 39 422
[2] Li Z L 2009 Chin. Phys. B 18 4074
[3] Wang J and Li B 2009 Chin. Phys. B 18 2109
[4] Xin X P and Chen Y 2013 Chin. Phys. Lett. 30 100202
[5] Zhang H, Zeng B Q, Ao L and Zhang Z 2012 Progress In Electromagnetics Research 127 537
[6] Nong L J, Zhang D J, Shi Y and Zhang W Y 2013 Chin. Phys. Lett. 30 040201
[7] Wang X and Chen Y 2014 Chin. Phys. B 23 070203
[8] Qiao Z J 2003 Commun. Math. Phys. 239 309
[9] Olver P 1986 Applications of Lie Group to Differential Equations (New York: Spring-Verlag)
[10] Bluman G W and Kumei S 1989 Symmetries and Differential Equations (New York: Spring-Verlag)
[11] Zeng B Q, Xiong G Y, Chen S and Wang W Z 2007 Appl. Phys. Lett. 90 033112
[12] Tang X Y, Lou S Y and Zhang Y 2002 Phys. Rev. E 66 046601
[13] Liu P and Fu P K 2011 Commun. Theor. Phys. 56 5
[14] Liu P, Yang J J and Ren B 2013 Chin. Phys. Lett. 30 100201
[15] Cheng D Y, Zhang D J and Bi J B 2008 Science in China Seires A: Math. 51 55
[16] Zhang D J, Ji J and Zhao S L 2009 Physica D 238 2361
[17] Painlevé P 1902 Acta Math. 25 1
[18] Conte R 1989 Phys. Lett. A 140 383
[19] Lou S Y 1998 Z. Naturforsch A 53 251
[20] Liu P, Li Z L and Lou S Y 2010 Appl. Math. Mech. 31 1383
[21] Ramani A, Grammaticos B and Bountis T 1989 Phys. Rep. 180 159
[22] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522
[23] Lou S Y, Cheng X P, Chen C l and Tang X Y 2013 ArXiv: 1208.5314v2
[24] Lou S Y, Hu X R and Chen Y 2012 J. Phys. A: Math. Theor. 45 155209
[25] Liu P, Li L Z and Luo R Z 2012 Appl. Math. Comput. 219 2149
[26] Liu P and Fu P K 2011 Chin. Phys. B 20 090203
[27] Liu P and Li Z L 2013 Chin. Phys. B 22 050204
[28] Wu H and Zhang D J 2011 Chin. Phys. Lett. 28 020203
[29] Gao X N, Lou S Y and Tang X Y 2013 Journal of High Energy Physics 05 029
[1] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[2] Deformed two-dimensional rogue waves in the (2+1)-dimensional Korteweg-de Vries equation
Yulei Cao(曹玉雷), Peng-Yan Hu(胡鹏彦), Yi Cheng(程艺), and Jingsong He(贺劲松). Chin. Phys. B, 2021, 30(3): 030503.
[3] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[4] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[5] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[6] Bäcklund transformations, consistent Riccati expansion solvability, and soliton-cnoidal interaction wave solutions of Kadomtsev-Petviashvili equation
Ping Liu(刘萍), Jie Cheng(程杰), Bo Ren(任博), Jian-Rong Yang(杨建荣). Chin. Phys. B, 2020, 29(2): 020201.
[7] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[8] Dislocation neutralizing in a self-organized array of dislocation and anti-dislocation
Feng-Lin Deng(邓凤麟), Xiang-Sheng Hu(胡湘生), Shao-Feng Wang(王少峰). Chin. Phys. B, 2019, 28(11): 116103.
[9] Multiple Darboux-Bäcklund transformations via truncated Painlevé expansion and Lie point symmetry approach
Shuai-Jun Liu(刘帅君), Xiao-Yan Tang(唐晓艳), Sen-Yue Lou(楼森岳). Chin. Phys. B, 2018, 27(6): 060201.
[10] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[11] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[12] Recursion-transform method and potential formulae of the m×n cobweb and fan networks
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2017, 26(9): 090503.
[13] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
[14] Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC network
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2016, 25(5): 050504.
[15] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
No Suggested Reading articles found!