Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 124212    DOI: 10.1088/1674-1056/23/12/124212
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Spatial weak-light ring soliton in self-assembled quantum dots

Chen Qiu-Cheng (陈秋成)
Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008, China
Abstract  

By using semiclassical theory combined with multiple-scale method, we analytically study the linear absorption and the nonlinear dynamical properties in a lifetime broadened Λ -type three-level self-assembled quantum dots. It is found that this system can exhibit the transparency, and the width of the transparency window becomes wider with the increase of control light field. Interestingly, a weak probe light beam can form spatial weak-light dark solitons. When it propagates along the axial direction, the soliton will transform into a steady spatial weak-light ring dark soltion. In addition, the stability of two-dimensional spatial optical solitons is testified numerically.

Keywords:  spatial weak-light ring dark soliton      electromagnetically induced transparency      self-assembled quantum dots  
Received:  19 January 2014      Revised:  16 May 2014      Accepted manuscript online: 
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  02.90.+p (Other topics in mathematical methods in physics)  
Fund: 

Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 11247313).

Corresponding Authors:  Chen Qiu-Cheng     E-mail:  chenqiucheng68@126.com

Cite this article: 

Chen Qiu-Cheng (陈秋成) Spatial weak-light ring soliton in self-assembled quantum dots 2014 Chin. Phys. B 23 124212

[1]Haus H A and Wong W S 1996 Rev. Mod. Phys. 68 423
[2]Chen Z G, Segev M and Christodoulides D N 2012 Rep. Prog. Phys. 75 86401
[3]Stegeman G I and Segev M 1998 Phys. Today 51 42
[4]Hasegawa A and Kodama Y 1995 Solitons in Optical Communications (Oxford: Clarendon Press)
[5]Hang C, Huang G X and Deng L 2006 Phys. Rev. E 74 046601
[6]Luo X Q, Wang D L, Zhang Z Q, Ding J W and Liu W M 2011 Phys. Rev. A 84 033803
[7]Kang H and Zhu Y F 2003 Phys. Rev. Lett. 91 093601
[8]Wang D L, Yan X H and Liu W M 2008 Phys. Rev. E 78 026606
[9]Li L and Huang G X 2010 Eur. Phys. J. D 58 339
[10]She Y C, Wang D L, Zhang W X, He Z M and Ding J W 2010 J. Opt. Soc. Am. B 27 208
[11]Wang D L and Yan X H 2011 Int. J. Mod. Phys. B 25 781
[12]Wu Y and Yang X X 2007 Appl. Phys. Lett. 91 094104
[13]Hu X and Li B 2011 Chin. Phys. B 20 050315
[14]Wang D L, Yan X H and Wang F J 2007 Chin. Phys. Lett. 24 1817
[15]Ma Y H and Zhou L 2013 Chin. Phys. B 22 024204
[16]Li B, Zhang X F, Li Y Q, Chen Y and Liu W M 2008 Phys. Rev. A 78 023608
[17]Chen J C, Li B and Chen Y 2013 Chin. Phys. B 22 110306
[18]Liu C F, Fan H, Gou S C and Liu W M 2014 Sci. Rep. 4 4224
[19]Liu C F, Yu Y M, Gou S C and Liu W M 2013 Phys. Rev. A 87 063630
[20]Hang C, Knototop V V and Huang G X 2009 Phys. Rev. A 79 033826
[21]Liu C F, Fan H, Zhang Y C, Wang D S and Liu W M 2012 Phys. Rev. A 86 053616
[22]Zhang X F, Hu X H, Liu X X and Liu W M 2009 Phys. Rev. A 79 033630
[23]Liu C F and Liu W M 2012 Phys. Rev. A 86 033602
[24]Li H J, Wu Y P and Huang G X 2011 Phys. Rev. A 84 033816
[25]Li Q Y, Li Z D, Yao S F, Li L and Fu G S 2010 Chin. Phys. B 19 080501
[26]Song W W, Li Q Y, Li Z D and Fu G S 2010 Chin. Phys. B 19 070503
[27]Hang C and Knototop V V 2011 Phys. Rev. A 83 053845
[28]Peng P C, Lin C T, Kuo H C, Tsai W K, Liu J N, Chi S, Wang S C, Lin G, Yang H P, Lin K F and Chi J Y 2006 Opt. Express 14 12880
[29]Su H and Chuang S L 2006 Opt. Lett. 31 271
[30]Villas B J M, Govorov A O and Ulloa S E 2004 Phys. Rev. B 69 125342
[31]Yang W X, Chen A X, Lee R K and Wu Y 2011 Phys. Rev. A 84 013835
[32]She Y C, Zheng X J, Wang D L and Zhang W X 2013 Opt. Express 21 17392
[33]Li J H, Yu R, Huang P and Yang X X 2009 Phys. Lett. A 373 554
[34]Marcinkevičius S, Gushterov A and Reithmaier J P 2008 Appl. Phys. Lett. 92 041113
[35]Dutton Z 2002 Ph. D. Thesis (Harvard University)
[36]Huang G X, Deng L and Payne M G 2005 Phys. Rev. E 72 016617
[37]She Y C, Wang D L and Ding J W 2009 Acta Phys. Sin. 58 3198 (in Chinese)
[38]Zeng K H, Wang D L, She Y C and Zhang W X 2013 Acta Phys. Sin. 62 147801 (in Chinese)
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[3] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[4] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[7] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[8] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[9] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[10] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[11] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[12] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[13] Precise measurement of a weak radio frequency electric field using a resonant atomic probe
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Jingxu Bai(白景旭), Yuechun Jiao(焦月春), Jianming Zhao(赵建明). Chin. Phys. B, 2020, 29(3): 033201.
[14] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[15] Rydberg electromagnetically induced transparency and Autler-Townes splitting in a weak radio-frequency electric field
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Yuechun Jiao(焦月春), Jianming Zhao(赵建明), Suotang Jia(贾锁堂). Chin. Phys. B, 2019, 28(5): 053202.
No Suggested Reading articles found!