Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 078902    DOI: 10.1088/1674-1056/22/7/078902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Evolution of IPv6 Internet topology with unusual sudden changes

Ai Jun (艾均)a, Zhao Hai (赵海)a, Kathleen M. Carleybb, Su Zhan (苏湛)a, Li Hui (李辉)a
a College of Information Science and Engineering, Northeastern University, Shenyang 110819, China;
b Institute for Software Research, Carnegie Mellon University, PA 15213, USA
Abstract  The evolution of Internet topology is not always smooth but sometimes with unusual sudden changes. Consequently, identifying patterns of unusual topology evolution is critical for Internet topology modeling and simulation. We analyze IPv6 Internet topology evolution in IP-level graph to demonstrate how it changes in uncommon ways to restructure the Internet. After evaluating the changes of average degree, average path length, and some other metrics over time, we find that in the case of a large-scale growing the Internet becomes more robust; whereas in a top-bottom connection enhancement the Internet maintains its efficiency with links largely decreased.
Keywords:  scale-free network      Internet topology evolution      unusual evolution of Internet topology      complex network analysis  
Received:  30 May 2012      Revised:  18 December 2012      Accepted manuscript online: 
PACS:  89.20.Hh (World Wide Web, Internet)  
  89.75.Hc (Networks and genealogical trees)  
  89.75.-k (Complex systems)  
  05.20.-y (Classical statistical mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60973022).
Corresponding Authors:  Su Zhan     E-mail:  suzhan@outlook.com

Cite this article: 

Ai Jun (艾均), Zhao Hai (赵海), Kathleen M. Carleyb, Su Zhan (苏湛), Li Hui (李辉) Evolution of IPv6 Internet topology with unusual sudden changes 2013 Chin. Phys. B 22 078902

[1] Oliveira R V, Zhang B and Zhang L 2007 SIGCOMM Comput. Commun. Rev. 37 313
[2] Donnet B, Huffaker B, Friedman T and Claffy K C 2007 n INETWORKING 2007, Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet, Berlin, Heidelberg, 2007, Springer. pp. 738-748
[3] LuckieM2010 Proceedings of the 10th Annual Conference on Internet Measurement, November 1, 2010, Melbourne, Australia, p. 239
[4] Zhou S and Mondragon R J 2004 Phys. Rev. E 70 066108
[5] Siganos G, Tauro S L and Faloutsos M 2006 J. Commun. Netw. 8 339
[6] Winter R 2009 Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distributed Simulation, June 22, 2009, Lake Placid, New York, USA, p. 72
[7] Wang X and Loguinov D 2010 IEEEACM Trans. Netw. 18 257
[8] Faloutsos M, Faloutsos P and Faloutsos C 1999 SIGCOMM Comput. Commun. Rev. 29 251
[9] Vazquez A, Pastor-Satorras R and Vespignani A 2002 Phys. Rev. E 65 066130
[10] Guo J L 2008 Acta Phys. Sin. 57 756 (in Chinese)
[11] Fay D, Haddadi H, Thomason A, Moore A W, Mortier R, Jamakovic A, Uhlig S and Rio M 2010 IEEEACM Trans. Netw. 18 164
[12] Guo J L 2010 Chin. Phys. B 19 120503
[13] Jin C, Chen Q and Jamin S 2000 Research Report CSE-TR-433-00, University of Michigan at Ann Arbor
[14] Ahn Y Y, Bagrow J P and Lehmann S 2010 Nature 466 761
[15] Xin Z, Yi D Y, Ouyang Z Z and Li D 2012 Chin. Phys. Lett. 29 038902
[16] Amaral L A N, Scala A, Barthélémy M and Stanley H E 2000 Proc. Natl. Acad. Sci. 97 11149
[17] Strogatz S H 2001 Nature 410 268
[18] Mi Z K, Wang W N and Lee J Y 2004 Chin. Phys. Lett. 21 243
[19] Yuan S Q, Zhao H, Li C and Zhang X 2008 Acta Phys. Sin. 57 4805 (in Chinese)
[20] Li Y, Cao H D, Shan X M, Ren Y and Yuan J 2009 Chin. Phys. B 18 1721
[21] Wasserman S and Faust K 1994 Social Network Analysis: Methods and Applications. (Cambridge: Cambridge University Press) p. 201
[22] Dorogovtsev S N, Goltsev AV and Mendes J F F 2006 Phys. Rev. Lett. 96 40601
[23] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[24] Clauset A, Shalizi C R and Newman M E J 2009 SIAM. Rev. 51 661
[25] Zhang G Q, Wang D and Li G J 2007 Phys. Rev. E 76 017101
[1] Evolution of donations on scale-free networks during a COVID-19 breakout
Xian-Jia Wang(王先甲) and Lin-Lin Wang(王琳琳). Chin. Phys. B, 2022, 31(8): 080204.
[2] Finite density scaling laws of condensation phase transition in zero-range processes on scale-free networks
Guifeng Su(苏桂锋), Xiaowen Li(李晓温), Xiaobing Zhang(张小兵), Yi Zhang(张一). Chin. Phys. B, 2020, 29(8): 088904.
[3] Study on the phase transition of the fractal scale-free networks
Qing-Kuan Meng(孟庆宽), Dong-Tai Feng(冯东太), Yu-Ping Sun(孙玉萍), Ai-Ping Zhou(周爱萍), Yan Sun(孙艳), Shu-Gang Tan(谭树刚), Xu-Tuan Gao(高绪团). Chin. Phys. B, 2018, 27(10): 106402.
[4] Multiple-predators-based capture process on complex networks
Rajput Ramiz Sharafat, Cunlai Pu(濮存来), Jie Li(李杰), Rongbin Chen(陈荣斌), Zhongqi Xu(许忠奇). Chin. Phys. B, 2017, 26(3): 038901.
[5] Effects of channel noise on synchronization transitions in delayed scale-free network of stochastic Hodgkin-Huxley neurons
Wang Bao-Ying (王宝英), Gong Yu-Bing (龚玉兵). Chin. Phys. B, 2015, 24(11): 118702.
[6] Deductive way of reasoning about the internet AS level topology
Dávid Szabó, Attila Kőrösi, József Bíró, András Gulyás. Chin. Phys. B, 2015, 24(11): 118901.
[7] Co-evolution of the brand effect and competitiveness in evolving networks
Guo Jin-Li (郭进利). Chin. Phys. B, 2014, 23(7): 070206.
[8] Effects of node buffer and capacity on network traffic
Ling Xiang (凌翔), Hu Mao-Bin (胡茂彬), Ding Jian-Xun (丁建勋). Chin. Phys. B, 2012, 21(9): 098902.
[9] An evolving network model with modular growth
Zou Zhi-Yun(邹志云), Liu Peng(刘鹏), Lei Li(雷立), and Gao Jian-Zhi(高健智) . Chin. Phys. B, 2012, 21(2): 028904.
[10] Epidemic spreading on a scale-free network with awareness
Lu Yan-Ling (鲁延玲), Jiang Guo-Ping (蒋国平), Song Yu-Rong (宋玉蓉). Chin. Phys. B, 2012, 21(10): 100207.
[11] Epidemic spreading in scale-free networks including the effect of individual vigilance
Gong Yong-Wang(巩永旺), Song Yu-Rong(宋玉蓉), and Jiang Guo-Ping(蒋国平) . Chin. Phys. B, 2012, 21(1): 010205.
[12] Integrated systemic inflammatory response syndrome epidemic model in scale-free networks
Cai Shao-Hong(蔡绍洪), Zhang Da-Min(张达敏), Gong Guang-Wu(龚光武), and Guo Chang-Rui(郭长睿) . Chin. Phys. B, 2011, 20(9): 090503.
[13] Generalized minimum information path routing strategy on scale-free networks
Zhou Si-Yuan(周思源), Wang Kai(王开), Zhang Yi-Feng(张毅锋) Pei Wen-Jiang(裴文江) Pu Cun-Lai(濮存来), and Li Wei(李微) . Chin. Phys. B, 2011, 20(8): 080501.
[14] Degree and connectivity of the Internet's scale-free topology
Zhang Lian-Ming(张连明), Deng Xiao-Heng(邓晓衡), Yu Jian-Ping(余建平), and Wu Xiang-Sheng(伍祥生) . Chin. Phys. B, 2011, 20(4): 048902.
[15] Poor–rich demarcation of Matthew effect on scale-free systems and its application
Yan Dong(闫栋), Dong Ming(董明), Abdelaziz Bouras, and Yu Sui-Ran(于随然) . Chin. Phys. B, 2011, 20(4): 040205.
No Suggested Reading articles found!
    PDF Preview