Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 058701    DOI: 10.1088/1674-1056/22/5/058701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Adaptive synchronization control of coupled chaotic neurons in the external electrical stimulation

Yu Hai-Tao (于海涛), Wang Jiang (王江), Deng Bin (邓斌), Wei Xi-Le (魏熙乐), Chen Ying-Yuan (陈颖源)
School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
Abstract  In this paper we present a combined algorithm for the synchronization control of two gap junction coupled chaotic FitzHugh-Nagumo (FHN) neurons in the external electrical stimulation. The controller consists of a combination of dynamical sliding mode control and adaptive backstepping control. The combined algorithm yields an adaptive dynamical sliding mode control law which has advantages over static sliding mode-based controller of chattering-free, i.e., a sufficiently smooth control input signal is generated. It is shown that the proposed control scheme can not only compensate for the system uncertainty, but also guarantee the stability of the synchronized error system. In addition, numerical simulations are also performed to demonstrate the effectiveness of the proposed adaptive controller.
Keywords:  FitzHugh-Nagumo neuron      synchronization      adaptive control  
Received:  26 September 2012      Revised:  04 November 2012      Accepted manuscript online: 
PACS:  87.19.lm (Synchronization in the nervous system)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61072012, 61104032, and 61172009), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 60901035 and 50907044).
Corresponding Authors:  Wang Jiang     E-mail:  jiangwang@tju.edu.cn

Cite this article: 

Yu Hai-Tao (于海涛), Wang Jiang (王江), Deng Bin (邓斌), Wei Xi-Le (魏熙乐), Chen Ying-Yuan (陈颖源) Adaptive synchronization control of coupled chaotic neurons in the external electrical stimulation 2013 Chin. Phys. B 22 058701

[1] Pikovsky A, Rosenblum M and Kurths J 2001 Synchronization: a Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press)
[2] Rabinovich M I, Varona P, Selverston A I and Abarbanel H D I 2006 Rev. Mod. Phys. 78 1213
[3] Manyakov N V and van Hulle M M 2008 Chaos 18 037130
[4] Elson R C, Selverston A I, Huerta R, Rulkov N F, Rabinovich M I and Abarbanel H D I 1998 Phys. Rev. Lett. 81 5692
[5] Boccaletti S, Kurths J, Osipov G, Valladares D L and Zhou C S 2002 Phys. Rep. 366 1
[6] Singer W 1993 Annu. Rev. Physiol. 55 349
[7] MacKay W A 1997 Trends Cogn. Sci. 1 176
[8] Levy R, Hutchison W D, Lozano A M and Dostrovsky J O 2000 J. Neurosci. 20 7766
[9] Albert W W, Wright E J and Feinstein B 1969 Nature 221 670
[10] Milton J and Jung P 2003 Epilepsy as a Dynamic Disease (Berlin: Springer-Verlag)
[11] Li Z and Han C Z 2002 Chin. Phys. 11 9
[12] Li G H, Zhou S P and Xu D M 2004 Chin. Phys. 13 168
[13] Yu Y G and Zhang S C 2002 Chin. Phys. 11 1249
[14] Zheng Z G, Hu G, Zhou C S and Hu B B 2000 Acta Phys. Sin. 49 2320 (in Chinese)
[15] Huang X G, Xu J X, Huang W and Lü Z J 2001 Chin. Phys. 10 1113
[16] Wang J, Deng B and Tsang K M 2004 Chaos Soliton. Fract. 22 469
[17] Wang Q Y, Lu Q S, Chen G R and Guo D H 2006 Phys. Lett. A 356 17
[18] Che Y Q, Wang J, Zhou S S and Deng B 2009 Chaos Soliton. Fract. 40 1333
[19] Che Y Q, Wang J, Cui S G, Deng B, Wei X L, Chan W L and Tsang K M 2011 Nonlinear Analysis: Real World Applications 12 3199
[20] Wang J, Deng B and Fei X Y 2006 Chaos Soliton. Fract. 29 182
[21] Wang J, Deng B and Fei X Y 2006 Chaos Soliton. Fract. 27 1272
[22] Batista C A S, Lopes S R, Viana R L and Batista A M 2010 Neural Netw. 23 114
[23] Popovych O V, Hauptmann C and Tass P A 2006 Biol. Cybernet. 95 69
[24] FitzHugh R 1961 Biophys. J. 1 445
[25] Thompson C J, Bardos D C, Yang Y S and Joyner K H 1999 Chaos Soliton. Fract. 10 1825
[26] Sira-Ramirez H 1992 Int. J. Control 56 1
[27] Lü L, Yu M, Wei L L, Zhang M and Li Y S 2012 Chin. Phys. B 21 100507
[28] Zhou J and Wen C 2008 Adaptive Backstepping Control of Uncertain Systems: Nonsmooth Nonlinearities, Interactions or Time-Variations (Heidelberg, Berlin: Springer-Verlag)
[29] Rolf V and Robert W 2002 Biol. Cell. 94 501
[30] Stephen B 2003 Biosystems 68 213
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[5] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[8] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[9] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[10] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[11] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[12] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[13] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[14] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[15] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
No Suggested Reading articles found!