|
|
Coherence generation and population transfer in a three-level ladder system |
Zhang Bing(张冰)a)b)c)d), Jiang Yun(姜云)a)b), Wang Gang(王刚)a)b), Zhang Li-Da(张理达)a)b), Wu Jin-Hui(吴金辉) a)b), and Gao Jin-Yue(高锦岳)a)b)† |
a College of Physics, Jilin University, Changchun 130023, China; b Key Laboratory of Coherent Light and Atomic and Molecular Spectroscopy of Educational Ministry, Changchun 130023, China; c College of Physics and Electronic Engineering, Mudanjiang Teachers' College, Mudanjiang 157012, China; d Heilongjiang Superhard Materials Key Laboratory, Mudanjiang 157012, China |
|
|
Abstract This work explores the effect of spontaneous emission on coherence generation and population transfer in a three-level ladder atomic system driven by two pulses in counterintuitive order. With adiabatic evolution and the weak-dephasing approximation, we find that a large coherence and population transfer can be achieved even with spontaneous decay rate. The maximum coherence and population transfer decrease with the increase of spontaneous decay rate from the highest state to intermediate state. But this effect can be compensated by shortening the pulse width and enlarging the delay time. Results show that the coherence generation and population transfer never depend on the spontaneous decay rate from the intermediate state to ground state. The validity of the analytic solution is examined by numerical calculation.
|
Received: 03 September 2010
Revised: 17 January 2011
Accepted manuscript online:
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
42.55.Ah
|
(General laser theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10774059), the National Basic Research Program of China (Grant No. 2006CB921101), and the Natural Science Foundation of Heilongjiang Province, China (Grant No. F200928). |
Cite this article:
Zhang Bing(张冰), Jiang Yun(姜云), Wang Gang(王刚), Zhang Li-Da(张理达), Wu Jin-Hui(吴金辉), and Gao Jin-Yue(高锦岳) Coherence generation and population transfer in a three-level ladder system 2011 Chin. Phys. B 20 050304
|
[1] |
Vitanov N V, Halfmann T, Shore B W and Bergmann K 2001 Rev. Phys. Chem. 52 763
|
[2] |
Payne M G and Deng L 2001 Phys. Rev. A 64 031802
|
[3] |
Kozuma M, Akamatsu D, Deng L, Hagley E W and Payne M G 2002 Phys. Rev. A 66 031801
|
[4] |
Wang H H, Du D M, Fan Y F, Li A J, Wang L, Wei X G, Kang Z H, Jiang Y, Wu J H and Gao J Y 2008 Appl. Phys. Lett. 93 231107
|
[5] |
Payne M G and Deng L 2002 Phys. Rev. A bf 65 063806
|
[6] |
Wang H H, Wang L, Wei X G, Li Y J, Du D M, Kang Z H, Jiang Y and Gao J Y 2008 Appl. Phys. Lett. 92 041107
|
[7] |
Jain M, Xia H, Yin G Y, Merriam A J and Harris S E 1996 Phys. Rev. Lett. 77 4326
|
[8] |
Wang L, Song X L, Li A J, Wang H H, Wei X G, Kang Z H, Jiang Y and Gao J Y 2008 Opt. Lett. 33 2380
|
[9] |
Li A J, Song X L, Wei X G, Wang L and Gao J Y 2008 Phys. Rev. A 77 053806
|
[10] |
Zhang B, Xu W H, Zhang H F and Gao J Y 2004 Chin. Phys. bf13 1722
|
[11] |
Jia G R , Ren Z Z, Wu S L and Zhang X Z 2009 Chin. Phys. B bf18 5272
|
[12] |
Li X H, Zhang X Z, Zhang R Z and Yang X D 2007 Chin. Phys. B bf16 2924
|
[13] |
Kis Z and Renzoni F 2002 Phys. Rev. A 65 032318
|
[14] |
Ye C Y, Sautenkov V A, Rostovtsev Y V and Scully M O 2003 Opt. Lett. 28 2213
|
[15] |
Remacle F and Levine R D 2006 Phys. Rev. A bf 73 033820
|
[16] |
Gaubatz U, Rudecki P, Schiemann S and Bergmann K 1990 J. Chem. Phys. 92 5363
|
[17] |
Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
|
[18] |
Vitanov N V, Fleischhauer M, Shore B W and Bergmann K 2001 Opt. Phys. 46 55
|
[19] |
Broers B, van den Heuvell H B and Noordam L D 1992 Phys. Rev. Lett. 69 2062
|
[20] |
Maas D J, Rella C W, Antoine P, Toma E S and Noordam L D 1999 Phys. Rev. A 59 1374
|
[21] |
Rickes T, Yatsenko L P, Steuerwald S, Halfmann T, Shore B W, Vitanov N V and Bergmann K 2000 J. Chem. Phys. 113 534
|
[22] |
Rangelov A A, Vitanov N V, Yatsenko L P, Shore B W, Halfmann T and Bergmann K 2005 Phys. Rev. A 72 053403
|
[23] |
Xue Y, Wang G, Wu J H and Gao J Y 2007 Phys. Rev. A 75 063832
|
[24] |
Sangouard N, Yatsenko L P, Shore B W and Halfmann T 2006 Phys. Rev. A 73 043415
|
[25] |
Camp H A, Shah M H, Trachy M L, Weaver O L and DePaola B D 2005 Phys. Rev. A 71 053401
|
[26] |
Yatsenko L P, Rangelov A A, Vitanov N V and Shore B W 2006 J. Chem.Phys. 125 014302
|
[27] |
Almazor M L, Dulieu O, Elbs M, Tiemann E and Masnou-Seeuws F 1999 Eur. Phys. J. D 5 237
|
[28] |
Fernandez R G, Ekers A, YatsenkoL P, Vitanov N V and Bergmann K 2005 Phys. Rev. Lett. 95 043001
|
[29] |
S"uptitz W, Duncan B C and Gould P L 1997 J. Opt. Soc. Am. B 14 1001
|
[30] |
Ivanov P A, Vitanov N V and Bergmann K 2004 Phys. Rev. A 70 063409
|
[31] |
Ivanov P A, Vitanov N V and Bergmann K 2005 Phys. Rev. A 72 053412
|
[32] |
Band Y B 1992 Phys. Rev. A 45 6643 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|