Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 048701    DOI: 10.1088/1674-1056/20/4/048701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Characterization of the BaBiO3-doped BaTiO3 positive temperature coefficient of a resistivity ceramic using impedance spectroscopy with Tc=155℃

Yuan Chang-Lai(袁昌来)a)b), Liu Xin-Yu(刘心宇)a)b), Zhou Chang-Rong(周昌荣)b), Xu Ji-Wen(许积文)b),and Yang Yun(杨云) b)
a College of Materials Science and Engineering, Central South University, Changsha 410083, China; b School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
Abstract  BaBiO3-doped BaTiO3 (BB–BT) ceramic, as a candidate for lead-free positive temperature coefficient of resistivity (PTCR) materials with a higher Curie temperature, has been synthesized in air by a conventional sintering technique. The temperature dependence of resistivity shows that the phase transition of the PTC thermistor ceramic occurs at the Curie temperature, Tc=155 ℃, which is higher than that of BaTiO3 ( ≤ 130 ℃). Analysis of ac impedance data using complex impedance spectroscopy gives the alternate current (AC) resistance of the PTCR ceramic. By additional use of the complex electric modulus formalism to analyse the same data, the inhomogeneous nature of the ceramic may be unveiled. The impedance spectra reveal that the grain resistance of the BB–BT sample is slightly influenced by the increase of temperature, indicating that the increase in overall resistivity is entirely due to a grain-boundary effect. Based on the dependence of the extent to which the peaks of the imaginary part of electric modulus and impedance are matched on frequency, the conduction mechanism is also discussed for a BB–BT ceramic system.
Keywords:  BaBiO3-doped BaTiO3      positive temperature coefficient thermistor      impedance spectroscopy      high Tc  
Received:  16 June 2010      Revised:  08 December 2010      Accepted manuscript online: 
PACS:  87.19.rf (Dielectric properties)  
  84.32.Ff (Conductors, resistors (including thermistors, varistors, and photoresistors))  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  82.56.Na (Relaxation)  
Fund: Project supported by the Research Funds of the Guangxi Key Laboratory of Information Materials at the School of Material Science and Engineering, China (Grant No. 0710908-07-Z).

Cite this article: 

Yuan Chang-Lai(袁昌来), Liu Xin-Yu(刘心宇), Zhou Chang-Rong(周昌荣), Xu Ji-Wen(许积文), and Yang Yun(杨云) Characterization of the BaBiO3-doped BaTiO3 positive temperature coefficient of a resistivity ceramic using impedance spectroscopy with Tc=155℃ 2011 Chin. Phys. B 20 048701

[1] Urek S and Drofenik M 1999 J. Euro. Ceram. Soc. 19 913
[2] Zajc I and Drofenik M 1998 J. Mater. Res. 13 660
[3] Gillot C, Michenaud J P, Baukens I and Duvigneaud P H 1997 J. Am. Ceram. Soc. 80 1043
[4] Qi J Q, Gui Z L, Wu Y J and Li L T 2002 Mater. Chem. Phys. 73 97.
[5] Hill D and Tuller H 1991 Ceramic Sensors: Theory and Practice (New York: Marcel Dekker Inc.) p. 335
[6] Takeda H, Aoto W and Shiosaki T 2005 Appl. Phys. Lett. 87 102104
[7] Shimada T, Touji K, Katsuyama Y, Takeda H and Shiosaki T 2007 J. Euro. Ceram. Soc. 27 3877
[8] Xiang P H, Takeda H and Shiosaki T 2007 Appl. Phys. Lett. 91 162904
[9] Xiang P H, Takeda H and Shiosaki T 2008 J. Appl. Phys. 103 064102
[10] Xiang P H, Harinak H, Takeda H, Nishida T, Uchiyama K and Shiosaki T 2008 J. Appl. Phys. 104 094108
[11] Yuan C L, Liu X Y, Ma J F and Zhou C R 2010 Acta Phys. Sin. 59 4253 (in Chinese)
[12] Yuan C L, Liu X Y, Yang Y, Xu J W and Gu Y 2010 Acta Phys. Sin. 59 7396 (in Chinese)
[13] Heywang W 1961 Solid State Electron. 3 51
[14] Heywang W 1964 J. Am. Ceram. Soc. 47 484
[15] Jonker G H 1964 Solid State Electron. 7 895
[16] Kulwicki B M and Purdes A J 1970 Ferroelectrics 1 253
[17] Ihrig H and Puschert W 1977 J. Appl. Phys. 48 3081
[18] Cole K S and Cole R H 1941 J. Chem. Phys. 9 341
[19] Sinclair D C and West A R 1989 J. Appl. Phys. 66 3850
[20] Gerhardt R 1994 J. Phys. Chem. Solids 55 1491
[21] Cao W and Gerhardt R 1990 Solid State Ionics 42 213
[22] Lanfredi S and Nobre M A L 2005 Appl. Phys. Lett. 86 081916
[23] Cox D E and Sleight A W 1979 Acta Crystallogr. B 34 1
[24] Steigelmann O and Goertz P 2004 Key Eng. Mater. 264--268 1161
[25] Luo Y, Liu X Y, Li X Q and Liu G Z 2006 Solid State Ionics 177 1543
[1] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[2] Dielectric properties of nucleated erythrocytes as simulated by the double spherical-shell model
Jia Xu(徐佳), Weizhen Xie(谢伟珍), Yiyong Chen(陈一勇), Lihong Wang(王立洪), and Qing Ma(马青). Chin. Phys. B, 2020, 29(12): 128703.
[3] Electrical analysis of inter-growth structured Bi4Ti3O12–Na0.5Bi4.5Ti4O15 ceramics
Xiangping Jiang(江向平), Yalin Jiang(江亚林), Xingan Jiang(江兴安), Chao Chen(陈超), Na Tu(涂娜), Yunjing Chen(陈云婧). Chin. Phys. B, 2017, 26(7): 077701.
[4] Homogeneous interface-type resistance switching in Au/La0.67Ca0.33MnO3/SrTiO3/F:SnO2 heterojunction memories
Zhang Ting(张婷), Ding Ling-Hong(丁玲红), and Zhang Wei-Feng(张伟风) . Chin. Phys. B, 2012, 21(4): 047301.
[5] Investigation of ageing effects on the electrical properties of polyaniline/silver nanocomposites
Asma Binat Afzal and Muhammad Javed Akhtar. Chin. Phys. B, 2011, 20(5): 058102.
[6] Characteristics of sealed plasma electrolytic oxidation coatings with electrochemical impedance spectroscopy
Lü Guo-Hua(吕国华), Chen Huan(陈睆), Wang Xing-Quan(王兴权), Pang Hua(庞华), Zhang Gu-Ling(张谷令), Zou Bin(邹斌), Lee Heon-Ju, and Yang Si-Ze(杨思泽). Chin. Phys. B, 2010, 19(8): 085202.
[7] Oxygen-vacancy-related dielectric relaxation and conduction mechanisms in Bi5 TiNbWO15 ceramics
Wang Xiao-Juan(王晓娟), Gong Zhi-Qiang(龚志强), Qian Ya-Feng(钱亚峰), Zhu Jun(朱骏), and Chen Xiao-Bing(陈小兵). Chin. Phys. B, 2007, 16(7): 2131-2135.
No Suggested Reading articles found!