Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 016201    DOI: 10.1088/1674-1056/20/1/016201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural transition, dielectric and bonding properties of BeCN2

Gou Hui-Yang(缑慧阳), Gao Fa-Ming(高发明), Zhang Jing-Wu(张静武), and Li Zhi-Ping(李志平)
Department of Chemical Engineering, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Abstract  By means of first principle total energy calculations, this paper studies the structural transition, elastic, mechanical, dielectric and electronic properties of BeCN2. The calculations in total energy indicate that under ambient condition, the orthorhombic BeSiN2-type BeCN2 (space group Pna21) is a more favoured structure than the tetragonal chalcopyrite-type one (space group I-42d). The results of elastic properties reveal that BeCN2 in both orthorhombic and tetragonal structure has higher bulk and shear moduli and smaller Poisson's ratio. The calculated Vicker hardness of tetragonal phase is 36.8 GPa, indicating a hard material. The analyses of electronic structure and electron density difference demonstrate that these excellent mechanical properties are attributed to the stronger covalent-bonding of CN4 and BeN4 subunits in BeCN2 crystal. Also, the orthorhombic BeCN2 phase is found to be a transparent semiconductor material with the calculated direct band gap of about 5.56 eV, superior to the indirect band gap of diamond and c-BN. Moreover, it also calculates Born effective charges and dielectric constants of BeCN2. These results suggest that BeCN2 may have some useful applications as optoelectronic, optical window and wear resistant materials.
Keywords:  first-principle electron theory      dielectric      bonding  
Received:  21 May 2010      Revised:  27 July 2010      Accepted manuscript online: 
PACS:  62.20.-x (Mechanical properties of solids)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50672080).

Cite this article: 

Gou Hui-Yang(缑慧阳), Gao Fa-Ming(高发明), Zhang Jing-Wu(张静武), and Li Zhi-Ping(李志平) Structural transition, dielectric and bonding properties of BeCN2 2011 Chin. Phys. B 20 016201

[1] Karch K and Bechstedt F 1997 Phys. Rev. B 56 7404
[2] Karch K, Wagner J M and Bechstedt F 1998 Phys. Rev. B 57 7043
[3] Eewin S C and Zutic I 2004 Nature Mater. 3 410
[4] Mintairov A, Merz J, Osinsky A, Fuflyigin V and Zhu L D 2000 Appl. Phys. Lett. 76 2517
[5] Cook B P, Everitt H O, Avrutsky I, Osinsky A, Cai A and Muth J F 2005 Appl. Phys. Lett. 86 121906
[6] Parlak C and Eryigit R 2006 Phys. Rev. B 73 245217
[7] Parlak C and Eryigit R 2004 Phys. Rev. B 70 075210
[8] Janotti A, Wei S H, Zhang S B and Kurtz S 2001 Phys. Rev. B 63 195210
[9] Jaffe J E and Zunger A 1984 Phys. Rev. B 30 741
[10] Misaki T, Wakahara A, Okada H and Yoshida A 2004 J. Cryst. Growth 260 125
[11] Berger T U and Schnick W 1994 J. Alloys Comp. 206 179
[12] Pyykkö P 1990 Phys. Scr. T 33 52
[13] Paudel T R and Lambrecht W R L 2007 Phys. Rev. B 76 115205
[14] Lambrecht W R L, Alldredge E and Kim K 2005 Phys. Rev. B 72 155202
[15] Groen W A, Kraan M J and With G 1993 J. Europ. Ceram. Soc. 12 413
[16] Eckerlin V P 1967 Z. Anorg. Allg. Chem. 533 225
[17] Shaposhnikov V L, Krivosheeva A V, Arnaud F, Lazzari J L and Borisenko V E 2007 Phys. Stat. Sol. B 245 142
[18] Romer S R, Kroll P and Schnick W 2008 J. Phys.: Condens. Matter 21 275407
[19] Lambrecht W R L and Segall B 1992 Phys. Rev. B 45 1485
[20] Petukhov A G, Lambrecht W R L and Segall B 1994 Phys. Rev. B 49 4549
[21] Kim J Y and Hughbanks T 2000 Inorg. Chem. 39 3092
[22] Li L H, Li J Q and Wu L M 2008 J. Solid State Chem. 181 2462
[23] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Z. Krystallogr. 220 567
[24] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[25] Vanderbilt D 1990 Phys. Rev. B 41 7892
[26] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[27] Mulliken R S 1955 J. Chem. Phys. 23 1833
[28] Hamann D R, Schluter M and Chiang C 1979 Phys. Rev. Lett. 43 1494
[29] Refson K, Clark S J and Tulip P R 2006 Phys. Rev. B 73 155114
[30] Guti'errez G , Men'endez-Proupin E and Singh A K 2006 J. Appl. Phys. 99 103504
[31] Xu H B and Wang Y X 2009 Acta Phys. Sin. 58 5645 (in Chinese)
[32] Zhao W J, Xu H B and Wang Y X 2010 Chin. Phys. B 19 016201
[33] Hill R 1952 Proc. Phys. Soc. London 65 350
[34] Liang Y C, Li C, Guo W L and Zhang W Q 2009 Phys. Rev. B 79 024111
[35] Wang H, Li Q, Li Y W, Xu Y, Cui T, Oganov A R and Ma Y M 2009 Phys. Rev. B 79 132109
[36] Gao F M 2006 Phys. Rev. B 73 132104
[37] Tse J S, Klug D D and Gao F M 2006 Phys. Rev. B 73 140102(R)
[38] Gao F M, Tse J S and Klug D D 2007 J. Appl. Phys. 102 084311
[39] Guo G Y, Ishibashi S, Tamura T and Terakura K 2007 Phys. Rev. B 75 245403
[40] Gielisse P J, Mitra S S, Plendl J N, Griffis R D, Mansur L C, Marshall R and Pascoe E A 1967 Phys. Rev. 155 1039
[41] Sun J, Zhou X F, Chen J, Fan Y X, Wang H T, Guo X J, He J L and Tian Y J 2006 Phys. Rev. B 74 193101
[42] Ohba N, Miwa K, Nagasako N and Fukumoto A 2001 Phys. Rev. B 63 115207
[43] Karch K and Bechstedt F 1997 Phys. Rev. B 56 7404
[44] Ching W Y and Rulis P 2006 Phys. Rev. B 73 045202
[45] Filippetti A and Spaldin N A 2003 Phys. Rev. B 68 045111
[46] Pruneda J M and Artacho E 2005 Phys. Rev. B 72 085107 endfootnotesize
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Wideband frequency-dependent dielectric properties of rat tissues exposed to low-intensity focused ultrasound in the microwave frequency range
Xue Wang(王雪), Shi-Xie Jiang, Lin Huang(黄林), Zi-Hui Chi(迟子惠), Dan Wu(吴丹), and Hua-Bei Jiang. Chin. Phys. B, 2023, 32(3): 034305.
[3] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[4] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[7] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[8] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[9] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[10] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[11] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[12] Strong near-field couplings of anapole modes and formation of higher-order electromagnetic modes in stacked all-dielectric nanodisks
Bin Liu(刘彬), Ma-Long Hu(胡马龙), Yi-Wen Zhang(章艺文), Yue You(游悦), Zhao-Guo Liang(梁钊国), Xiao-Niu Peng(彭小牛), and Zhong-Jian Yang(杨中见). Chin. Phys. B, 2022, 31(5): 057802.
[13] Designing high k dielectric films with LiPON—Al2O3 hybrid structure by atomic layer deposition
Ze Feng(冯泽), Yitong Wang(王一同), Jilong Hao(郝继龙), Meiyi Jing(井美艺), Feng Lu(卢峰), Weihua Wang(王维华), Yahui Cheng(程雅慧), Shengkai Wang(王盛凯), Hui Liu(刘晖), and Hong Dong(董红). Chin. Phys. B, 2022, 31(5): 057701.
[14] Hybrid-anode structure designed for a high-performance quasi-vertical GaN Schottky barrier diode
Qiliang Wang(王启亮), Tingting Wang(王婷婷), Taofei Pu(蒲涛飞), Shaoheng Cheng(成绍恒),Xiaobo Li(李小波), Liuan Li(李柳暗), and Jinping Ao(敖金平). Chin. Phys. B, 2022, 31(5): 057702.
[15] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
No Suggested Reading articles found!