Please wait a minute...
Chinese Physics, 2004, Vol. 13(4): 552-555    DOI: 10.1088/1009-1963/13/4/025
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetization and demagnetization behaviours of melt-spun Pr12Fe82B6 and Pr8Fe87B5 ribbons

Du Xiao-Bo (杜晓波)ab, Zhang Hong-Wei (张宏伟)a, Rong Chuan-Bing (荣传兵)a, Zhang Jian (张健)a, Zhang Shao-Ying (张绍英)a, Shen Bao-Gen (沈保根)a, Yan Yu (闫羽)b, Jin Han-Min (金汉民)b 
a State Key Laboratory of Magnetism, Institute of Physics and Centre for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080, China; b Department of Physics, Jilin University, Changchun 130023, China
Abstract  Nanocrystalline Pr$_{12}$Fe$_{82}$B$_6$ and nanocomposite Pr$_8$Fe$_{87}$B$_5$ ribbons have been prepared using a melt spinning technique. Recoil loops have been measured at 20, 200 and 300K. Demagnetization curves are analysed by dividing it into reversible and irreversible portions. High recoil loop susceptibility at low applied field and large reversible change in the demagnetization curve have been found in Pr$_8$Fe$_{87}$B$_5$ ribbons, showing that the reversible behaviours in nanocomposite permanent magnets originate primarily from the magnetically soft phase. The hysteresis in recoil loops found in Pr$_8$Fe$_{87}$B$_5$ ribbons originates from the soft phase α-Fe that suffers a stress.
Keywords:  nanocomposite magnets      recoil loops      permeability      reversible and irreversible behaviour  
Received:  16 July 2003      Revised:  29 August 2003      Accepted manuscript online: 
PACS:  81.07.Bc (Nanocrystalline materials)  
  75.50.Tt (Fine-particle systems; nanocrystalline materials)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  75.30.Cr (Saturation moments and magnetic susceptibilities)  
  75.50.Ww (Permanent magnets)  
  81.20.-n (Methods of materials synthesis and materials processing)  
Fund: Project supported by the State Key Project of Fundamental Research (G 1998061305) and the National Natural Science Foundation of China (Grant No 10274102).

Cite this article: 

Du Xiao-Bo (杜晓波), Zhang Hong-Wei (张宏伟), Rong Chuan-Bing (荣传兵), Zhang Jian (张健), Zhang Shao-Ying (张绍英), Shen Bao-Gen (沈保根), Yan Yu (闫羽), Jin Han-Min (金汉民) Magnetization and demagnetization behaviours of melt-spun Pr12Fe82B6 and Pr8Fe87B5 ribbons 2004 Chinese Physics 13 552

[1] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[2] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[3] High permeability and bimodal resonance structure of flaky soft magnetic composite materials
Xi Liu(刘曦), Peng Wu(吴鹏), Peng Wang(王鹏), Tao Wang(王涛), Liang Qiao(乔亮), Fa-Shen Li(李发伸). Chin. Phys. B, 2020, 29(7): 077506.
[4] Effects of square micro-pillar array porosity on the liquid motion of near surface layer
Xiaoxi Qiao(乔小溪), Xiangjun Zhang(张向军), Ping Chen(陈平), Yu Tian(田煜), Yonggang Meng(孟永钢). Chin. Phys. B, 2020, 29(2): 024702.
[5] Techniques of microwave permeability characterization for thin films
Xi-Ling Li(李喜玲), Jian-Bo Wang(王建波), Guo-Zhi Chai(柴国志). Chin. Phys. B, 2019, 28(9): 097504.
[6] Micromagnetism simulation on effects of soft phase size on Nd2Fe14B/α–Fe nanocomposite magnet with soft phase imbedded in hard phase
Yu-Qing Li(李玉卿), Ming Yue(岳明), Yi Peng(彭懿), Hong-Guo Zhang(张红国). Chin. Phys. B, 2018, 27(8): 087502.
[7] Nanocrystalline and nanocomposite permanent magnets by melt spinning technique
Chuanbing Rong(荣传兵), Baogen Shen(沈保根). Chin. Phys. B, 2018, 27(11): 117502.
[8] Magnetic properties of Sn-substituted Ni–Zn ferrites synthesized from nano-sized powders of NiO, ZnO, Fe2O3, and SnO2
M A Ali, M M Uddin, M N I Khan, F U Z Chowdhury, S M Hoque, S I Liba. Chin. Phys. B, 2017, 26(7): 077501.
[9] Decoupling technique of patch antenna arrays with shared substrate by suppressing near-field magnetic coupling using magnetic metamaterials
Zhaotang Liu(柳兆堂), Jiafu Wang(王甲富), Shaobo Qu(屈绍波), Jieqiu Zhang(张介秋), Hua Ma(马华), Zhuo Xu(徐卓), Anxue Zhang(张安学). Chin. Phys. B, 2017, 26(4): 047301.
[10] Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules
Dan-Feng Zhang(张丹枫), Zhi-Feng Hao(郝志峰), Bi Zeng(曾碧), Yan-Nan Qian(钱艳楠), Ying-Xin Huang(黄颖欣), Zhen-Da Yang(杨振大). Chin. Phys. B, 2016, 25(4): 040201.
[11] Development of a new correlation to calculate permeability for flows with high Knudsen number
Esmaeil Dehdashti. Chin. Phys. B, 2016, 25(2): 024702.
[12] High frequency magnetic properties of ferromagnetic thin films and magnetization dynamics of coherent precession
Jiang Chang-Jun (蒋长军), Fan Xiao-Long (范小龙), Xue De-Sheng (薛德胜). Chin. Phys. B, 2015, 24(5): 057504.
[13] Effect of persistent high intraocular pressure on microstructure and hydraulic permeability of trabecular meshwork
Mei Xi (梅曦), Ren Lin (任琳), Xu Qiang (许强), Zheng Wei (郑炜), Liu Zhi-Cheng (刘志成). Chin. Phys. B, 2015, 24(5): 058701.
[14] Electromagnetic wave absorbing properties and hyperfine interactions of Fe-Cu-Nb-Si-B nanocomposites
Han Man-Gui (韩满贵), Guo Wei (郭韦), Wu Yan-Hui (吴燕辉), Liu Min (刘明), Magundappa L. Hadimani. Chin. Phys. B, 2014, 23(8): 083301.
[15] Influence of magnetic layer thickness on [Fe80Ni20–O/SiO2]n multilayer thin films
Wei Jian-Qing (魏建清), Geng Hao (耿昊), Xu Lei (徐磊), Wang Lai-Sen (王来森), Chen Yuan-Zhi (陈远志), Yue Guang-Hui (岳光辉), Peng Dong-Liang (彭栋梁). Chin. Phys. B, 2014, 23(8): 087504.
No Suggested Reading articles found!