Special Issue:
TOPICAL REVIEW — Iron-based high temperature superconductors
|
TOPICAL REVIEW—Iron-based high temperature superconductors |
Prev
Next
|
|
|
Electronic phase diagram of NaFe1-xCoxAs investigated by scanning tunneling microscopy |
Zhou Xiao-Dong (周晓东), Cai Peng (蔡鹏), Wang Ya-Yu (王亚愚) |
State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China |
|
|
Abstract Our recent scanning tunneling microscopy (STM) studies of the NaFe1-xCoxAs phase diagram over a wide range of dopings and temperatures are reviewed. Similar to the high-Tc cuprates, the iron-based superconductors lie in close proximity to a magnetically ordered phase. Therefore, it is widely believed that magnetic interactions or fluctuations play an important role in triggering their Cooper pairings. Among the key issues regarding the electronic phase diagram are the properties of the parent spin density wave (SDW) phase and the superconducting (SC) phase, as well as the interplay between them. The NaFe1-xCoxAs is an ideal system for resolving these issues due to its rich electronic phases and the charge-neutral cleaved surface. In our recent work, we directly observed the SDW gap in the parent state, and it exhibits unconventional features that are incompatible with the simple Fermi surface nesting picture. The optimally doped sample has a single SC gap, but in the underdoped regime we directly viewed the microscopic coexistence of the SDW and SC orders, which compete with each other. In the overdoped regime we observed a novel pseudogap-like feature that coexists with superconductivity in the ground state, persists well into the normal state, and shows great spatial variations.The rich electronic structures across the phase diagram of NaFe1-xCoxAs revealed here shed important new light for defining microscopic models of the iron-based superconductors. In particular, we argue that both the itinerant electrons and local moments should be considered on an equal footing in a realistic model.
|
Received: 09 May 2013
Accepted manuscript online:
|
PACS:
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
74.25.Dw
|
(Superconductivity phase diagrams)
|
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
74.55.+v
|
(Tunneling phenomena: single particle tunneling and STM)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2009CB929400 and 2010CB923003). |
Corresponding Authors:
Wang Ya-Yu
E-mail: yayuwang@tsinghua.edu.cn
|
Cite this article:
Zhou Xiao-Dong (周晓东), Cai Peng (蔡鹏), Wang Ya-Yu (王亚愚) Electronic phase diagram of NaFe1-xCoxAs investigated by scanning tunneling microscopy 2013 Chin. Phys. B 22 087413
|
[1] |
Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
|
[2] |
Chubukov A V, Efremov D V and Eremin I 2008 Phys. Rev. B 78 134512
|
[3] |
Mazin I I, Singh D J, Johannes M D and Du M H 2008 Phys. Rev. Lett. 101 057003
|
[4] |
Si Q M and Abrahams E 2008 Phys. Rev. Lett. 101 076401
|
[5] |
Seo K J, Bernevig B A and Hu J P 2008 Phys. Rev. Lett. 101 206404
|
[6] |
Wang F, Zhai H, Ran Y, Vishwanath A and Lee D H 2009 Phys. Rev. Lett. 102 047005
|
[7] |
de la Cruz C, Huang Q, Lynn J W, Li J Y, Ratcliff W, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L and Dai P C 2008 Nature 453 899
|
[8] |
Dong J, Zhang H J, Xu G, Li Z, Li G, Hu W Z, Wu D, Chen G F, Dai X, Luo J L, Fang Z and Wang N L 2008 Europhys. Lett. 83 27006
|
[9] |
Haule K and Kotliar G 2009 New J. Phys. 11 025021
|
[10] |
Zhou X D, Cai P, Wang A F, Ruan W, Ye C, Chen X H, You Y Z, Weng Z Y and Wang Y Y 2012 Phys. Rev. Lett. 109 037002
|
[11] |
Cai P, Zhou X D, Ruan W, Wang A F, Chen X H, Lee D H and Wang Y Y 2013 Nat. Commun. 4 1596
|
[12] |
Fischer O, Kugler M, Maggio-Aprile I, Berthod C and Renner C 2007 Rev. Mod. Phys. 79 353
|
[13] |
Hoffman J E 2011 Rep. Prog. Phys. 74 124513
|
[14] |
Yin Y, Zech M, Williams T L, Wang X F, Wu G, Chen X H and Hoffman J E 2009 Phys. Rev. Lett. 102 097002
|
[15] |
Nascimento V B, Li A, Jayasundara D R, Xuan Y, O'Neal J, Pan S H, Chien T Y, Hu B, He X B, Li G R, Sefat A S, McGuire M A, Sales B C, Mandrus D, Pan M H, Zhang J D, Jin R and Plummer E W 2009 Phys. Rev. Lett. 103 076104
|
[16] |
Chuang T M, Allan M P, Lee J, Xie Y, Ni N, Bud'ko S L, Boebinger G S, Canfield P C and Davis J C 2010 Science 327 181
|
[17] |
Zhang H, Dai J, Zhang Y J, Qu D R, Ji H W, Wu G, Wang X F, Chen X H, Wang B, Zeng C G, Yang J L and Hou J G 2010 Phys. Rev. B 81 104520
|
[18] |
Zhou X D, Ye C, Cai P, Wang X F, Chen X H and Wang Y Y 2011 Phys. Rev. Lett. 106 087001
|
[19] |
Hanaguri T, Niitaka S, Kuroki K and Takagi H 2010 Science 328 474
|
[20] |
Allan M P, Rost A W, Mackenzie A P, Xie Y, Davis J C, Kihou K, Lee C H, Iyo A, Eisaki H and Chuang T M 2012 Science 336 563
|
[21] |
Wang A F, Luo X G, Yan Y J, Ying J J, Xiang Z J, Ye G J, Cheng P, Li Z Y, Hu W J and Chen X H 2012 Phys. Rev. B 85 224521
|
[22] |
Zhao J, Adroja D T, Yao D X, Bewley R, Li S L, Wang X F, Wu G, Chen X H, Hu J P and Dai P C 2009 Nat. Phys. 5 555
|
[23] |
Li S L, de la Cruz C, Huang Q, Chen Y, Lynn J W, Hu J P, Huang Y L, Hsu F C, Yeh K W, Wu M K and Dai P C 2009 Phys. Rev. B 79 054503
|
[24] |
Dagotto E 2012 arXiv: 1210.6501 [cond-mat.supr-con]
|
[25] |
Li S L, de la Cruz C, Huang Q, Chen G F, Xia T L, Luo J L, Wang N L and Dai P C 2009 Phys. Rev. B 80 020504
|
[26] |
Hu W Z, Li G, Zheng P, Chen G F, Luo J L and Wang N L 2009 Phys. Rev. B 80 100507
|
[27] |
Fawcett E 1988 Rev. Mod. Phys. 60 209
|
[28] |
Kou S P, Li T and Weng Z Y 2009 Europhys. Lett. 88 17010
|
[29] |
You Y Z, Yang F, Kou S P and Weng Z Y 2011 Phys. Rev. B 84 054527
|
[30] |
Liu Z H, Richard P, Nakayama K, Chen G F, Dong S, He J B, Wang D M, Xia T L, Umezawa K, Kawahara T, Souma S, Sato T, Takahashi T, Qian T, Huang Y B, Xu N, Shi Y B, Ding H and Wang S C 2011 Phys. Rev. B 84 064519
|
[31] |
Yang H, Wang Z Y, Fang D L, Li S, Kariyado T, Chen G F, Ogata M, Das T, Balatsky A V and Wen H H 2012 Phys. Rev. B 86 214512
|
[32] |
Luetkens H, Klauss H H, Kraken M, Litterst F J, Dellmann T, Klingeler R, Hess C, Khasanov R, Amato A, Baines C, Kosmala M, Schumann O J, Braden M, Hamann-Borrero J, Leps N, Kondrat A, Behr G, Werner J and Buchner B 2009 Nat. Mater. 8 305
|
[33] |
Pratt D K, Tian W, Kreyssig A, Zarestky J L, Nandi S, Ni N, Bud'ko S L, Canfield P C, Goldman A I and McQueeney R J 2009 Phys. Rev. Lett. 103 087001
|
[34] |
Marsik P, Kim K W, Dubroka A, Roessle M, Malik V K, Schulz L, Wang C N, Niedermayer C, Drew A J, Willis M, Wolf T and Bernhard C 2010 Phys. Rev. Lett. 105 057001
|
[35] |
Ge Q Q, Ye Z R, Xu M, Zhang Y, Jiang J, Xie B P, Song Y, Zhang C L, Dai P and Feng D L 2013 Phys. Rev. X 3 011020
|
[36] |
McElroy K, Lee D H, Hoffman J E, Lang K M, Lee J, Hudson E W, Eisaki H, Uchida S and Davis J C 2005 Phys. Rev. Lett. 94 197005
|
[37] |
Boyer M C, Wise W D, Chatterjee K, Yi M, Kondo T, Takeuchi T, Ikuta H and Hudson E W 2007 Nat. Phys. 3 802
|
[38] |
de' Medici L, Hassan S R and Capone M 2009 J. Supercond. Nov. Magn. 22 535
|
[39] |
Richard P, Sato T, Nakayama K, Takahashi T and Ding H 2011 Rep. Prog. Phys. 74 124512
|
[40] |
Dai P C, Hu J P and Dagotto E 2012 Nat. Phys. 8 709
|
[41] |
Madhavan V, Chen W, Jamneala T, Crommie M F and Wingreen N S 1998 Science 280 567
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|