中国物理B ›› 2024, Vol. 33 ›› Issue (5): 58401-058401.doi: 10.1088/1674-1056/ad20db

• • 上一篇    下一篇

A novel complex-high-order graph convolutional network paradigm: ChyGCN

He-Xiang Zheng(郑和翔)1, Shu-Yu Miao(苗书宇)2, and Chang-Gui Gu(顾长贵)1,†   

  1. 1 Business School, University of Shanghai for Science and Technology, Shanghai 200093, China;
    2 Ant Group, Shanghai 200000, China
  • 收稿日期:2023-11-20 修回日期:2024-01-10 接受日期:2024-01-22 出版日期:2024-05-20 发布日期:2024-05-20
  • 通讯作者: Chang-Gui Gu E-mail:gu_changgui@163.com
  • 基金资助:
    Project supported by the National Natural Science Foundation of China (Grant Nos. 12275179 and 11875042) and the Natural Science Foundation of Shanghai Municipality, China (Grant No. 21ZR1443900).

A novel complex-high-order graph convolutional network paradigm: ChyGCN

He-Xiang Zheng(郑和翔)1, Shu-Yu Miao(苗书宇)2, and Chang-Gui Gu(顾长贵)1,†   

  1. 1 Business School, University of Shanghai for Science and Technology, Shanghai 200093, China;
    2 Ant Group, Shanghai 200000, China
  • Received:2023-11-20 Revised:2024-01-10 Accepted:2024-01-22 Online:2024-05-20 Published:2024-05-20
  • Contact: Chang-Gui Gu E-mail:gu_changgui@163.com
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Grant Nos. 12275179 and 11875042) and the Natural Science Foundation of Shanghai Municipality, China (Grant No. 21ZR1443900).

摘要: In recent years, there has been a growing interest in graph convolutional networks (GCN). However, existing GCN and variants are predominantly based on simple graph or hypergraph structures, which restricts their ability to handle complex data correlations in practical applications. These limitations stem from the difficulty in establishing multiple hierarchies and acquiring adaptive weights for each of them. To address this issue, this paper introduces the latest concept of complex hypergraphs and constructs a versatile high-order multi-level data correlation model. This model is realized by establishing a three-tier structure of complexes-hypergraphs-vertices. Specifically, we start by establishing hyperedge clusters on a foundational network, utilizing a second-order hypergraph structure to depict potential correlations. For this second-order structure, truncation methods are used to assess and generate a three-layer composite structure. During the construction of the composite structure, an adaptive learning strategy is implemented to merge correlations across different levels. We evaluate this model on several popular datasets and compare it with recent state-of-the-art methods. The comprehensive assessment results demonstrate that the proposed model surpasses the existing methods, particularly in modeling implicit data correlations (the classification accuracy of nodes on five public datasets Cora, Citeseer, Pubmed, Github Web ML, and Facebook are 86.1$\pm $0.33, 79.2$\pm $0.35, 83.1$\pm $0.46, 83.8$\pm $0.23, and 80.1$\pm $0.37, respectively). This indicates that our approach possesses advantages in handling datasets with implicit multi-level structures.

关键词: raph convolutional network, complex modeling, complex hypergraph

Abstract: In recent years, there has been a growing interest in graph convolutional networks (GCN). However, existing GCN and variants are predominantly based on simple graph or hypergraph structures, which restricts their ability to handle complex data correlations in practical applications. These limitations stem from the difficulty in establishing multiple hierarchies and acquiring adaptive weights for each of them. To address this issue, this paper introduces the latest concept of complex hypergraphs and constructs a versatile high-order multi-level data correlation model. This model is realized by establishing a three-tier structure of complexes-hypergraphs-vertices. Specifically, we start by establishing hyperedge clusters on a foundational network, utilizing a second-order hypergraph structure to depict potential correlations. For this second-order structure, truncation methods are used to assess and generate a three-layer composite structure. During the construction of the composite structure, an adaptive learning strategy is implemented to merge correlations across different levels. We evaluate this model on several popular datasets and compare it with recent state-of-the-art methods. The comprehensive assessment results demonstrate that the proposed model surpasses the existing methods, particularly in modeling implicit data correlations (the classification accuracy of nodes on five public datasets Cora, Citeseer, Pubmed, Github Web ML, and Facebook are 86.1$\pm $0.33, 79.2$\pm $0.35, 83.1$\pm $0.46, 83.8$\pm $0.23, and 80.1$\pm $0.37, respectively). This indicates that our approach possesses advantages in handling datasets with implicit multi-level structures.

Key words: raph convolutional network, complex modeling, complex hypergraph

中图分类号:  (Neural networks)

  • 84.35.+i
64.60.aq (Networks) 47.50.Cd (Modeling) 07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)