中国物理B ›› 2022, Vol. 31 ›› Issue (6): 66202-066202.doi: 10.1088/1674-1056/ac4a5f
Lin-Feng Wang(王林锋)†, Yi Dong(董义), Min-Hao Hu(胡旻昊), Jing Tao(陶静), Jin Li(李进), and Zhen-Dong Dai(戴振东)
Lin-Feng Wang(王林锋)†, Yi Dong(董义), Min-Hao Hu(胡旻昊), Jing Tao(陶静), Jin Li(李进), and Zhen-Dong Dai(戴振东)
摘要: Contact electrification (CE) is a pretty common phenomenon, but still is poorly understood. The long-standing controversy over the mechanisms of CE related to polymers is particularly intense due to their complexity. In this paper, the CE between metals and polymers is systematically studied, which shows the evolution of surfaces is accompanied by variations of CE outputs. The variations of CE charge quantity are closely related to the creep and deformation of the polymer and metal surfaces. Then the relationship between CE and polymer structures is put forward, which is essentially determined by the electronegativity of elements and the functional groups in the polymers. The effects of load and contact frequency on the CE process and outputs are also investigated, indicating the increase of CE charge quantity with load and frequency. Material transfer from polymer to metal is observed during CE while electrons transfer from metal to polymer, both of which are believed to have an influence on each other. The findings advance our understanding of the mechanism of CE between metal and polymers, and provides insights into the performance of CE-based application in various conditions, which sheds light on the design and optimization of CE-based energy harvest and self-powered sensing devices.
中图分类号: (Friction, tribology, and hardness)