中国物理B ›› 2022, Vol. 31 ›› Issue (4): 46301-046301.doi: 10.1088/1674-1056/ac280a
Yaocen Wang(汪姚岑)1,2,†, Ziyan Hao(郝梓焱)1,2, Yan Zhang(张岩)3,‡, Xiaoyu Liang(梁晓宇)4, Xiaojun Bai(白晓军)1, and Chongde Cao(曹崇德)1,2,§
Yaocen Wang(汪姚岑)1,2,†, Ziyan Hao(郝梓焱)1,2, Yan Zhang(张岩)3,‡, Xiaoyu Liang(梁晓宇)4, Xiaojun Bai(白晓军)1, and Chongde Cao(曹崇德)1,2,§
摘要: L10-FeNi hard magnetic alloy with coercivity reaching 861 Oe was synthesized through annealing Fe42Ni41.3Si8B4P4Cu0.7 amorphous alloy, and the L10-FeNi formation mechanism has been studied. It is found the L10-FeNi in annealed samples at 400 ℃ mainly originated from the residual amorphous phase during the second stage of crystallization which could take place over 60 ℃ lower than the measured onset temperature of the second stage with a 5 ℃/min heating rate. Annealing at 400 ℃ after fully crystallization still caused a slight increase of coercivity, which was probably contributed by the limited transformation from other high temperature crystalline phases towards L10 phase, or the removal of B from L10 lattice and improvement of the ordering quality of L10 phase due to the reduced temperature from 520 ℃ to 400 ℃. The first stage of crystallization has hardly direct contribution to L10-FeNi formation. Ab initio simulations show that the addition of Si or Co in L10-FeNi has the effect of enhancing the thermal stability of L10 phase without seriously deteriorating its magnetic hardness. The non-monotonic feature of direction dependent coercivity in ribbon segments resulted from the combination of domain wall pinning and demagnetization effects. The approaches of synthesizing L10-FeNi magnets by adding Si or Co and decreasing the onset crystallization temperature have been discussed in detail.
中图分类号: (Glasses and amorphous solids)