1 Vozmediano M A H, Katsnelson M I and Guinea F 2010 Phys. Rep. 496 109 2 Goerbig M O2011 Rev. Mod. Phys. 83 1193 3 Manes J L, Juan F D, Sturla M and Vozmediano M A H 2013 Phys. Rev. B 87 165131 4 Kitt A L, Pereira V M, Swan A K and Goldberg B B 2012 Phys. Rev. B 85 115432 5 Guinea F, Katsnelson M I and Geim A K 2009 Nat. Phys. 6 30 6 Low T and Guinea F 2010 Nano Lett. 10 3551 7 Moldovan D, Masir M R and Peeters F M 2013 Phys. Rev. B 88 035446 8 Stegmann T and Szpak N2016 New J. Phys. 18 125422 9 Carrillo-Bastos R, Le\'on C, Faria D, Latg\'e A, Andrei E Y and Sandler N 2016 Phys. Rev. B 94 125422 10 Torres V, Faria D and Latg\'e A 2018 Phys. Rev. B 97 165429 11 Zhai F, Ma Y and Chang K 2011 New J. Phys. 13 083029 12 Zhang D B, Seifert G and Chang K 2014 Phys. Rev. Lett. 112 96805 13 Jiang Y, Low T, Chang K, Katsnelson M I and Guinea F 2013 Phys. Rev. Lett. 110 46601 14 Wu Z, Zhai F, Peeters F M, Xu H and Chang K 2011 Phys. Rev. Lett. 106 176802 15 Chaves A, Covaci L, Rakhimov K yu, Farias G A and Peeters F M 2010 Phys. Rev. B. 82 205430 16 Georgiou T, Britnell L, Blake P, Gorbachev R V, Gholinia A, Geim A K, Casiraghi C and Novoselov K S 2011 Appl. Phys. Lett. 99 93103 17 Klimov N N, Jung S, Zhu S, Li T, Wright C A, Solares S D, Newell D B, Zhitenev N B and Stroscio J A 2012 Science 336 1557 18 Jang W J, Kim H, Shin Y R, Wang M, Jang S K, Kim M, Lee S, Kim S W, Song Y J and Kahng S J 2014 Carbon 74 139 19 Lim H, Jung J, Ruoff R S and Kim Y 2015 Nat. Commun. 6 8601 20 Yan H, Sun Y, He L, Nie J C and Chan M H W 2012 Phys. Rev. B 85 35422 21 Nemes-Incze P, Kukucska G, Koltai J, K\'urti J, Hwang C, Tapaszt\'o L and Bir\'o L P 2017 Sci. Rep. 7 3035 22 Neek-Amal M and Peeters F M 2012 Phys. Rev. B 85 195445 23 Neek-Amal M, Covaci L, Shakouri K and Peeters F M 2013 Phys. Rev. B 88 115428 24 Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Neto A H C and Crommie M F 2010 Science 329 544 25 Yeh N C, Teague M L, Yeom S, Standley B L, Wu R T P, Boyd D A and Bockrath M W 2011 Surf. Sci. 605 1649 26 Gomes K K, Mar W, Ko W, Guinea F and Manoharan H C 2012 Nature 483 306 27 Rechtsman M C, Zeuner J M, T\'unnermann A, Nolte S, Segev M and Szameit A 2013 Nat. Photon. 7 153 28 Schomerus H and Halpern N Y 2013 Phys. Rev. Lett. 110 13903 29 Brendel C, Peano V, Painter O and Marquardt F2017 Bulletin of the American Physical Society 2017 30 Abbaszadeh H, Souslov A, Paulose J, Schomerus H and Vitelli V 2017 Phys. Rev. Lett. 119 195502 31 Yang Z, Gao F, Yang Y and Zhang B 2017 Phys. Rev. Lett. 118 194301 32 Wen X, Qiu C, Qi Y, Ye L, Ke M, Zhang F and Liu Z 2019 Nat. Phys. 15 352 33 Thouless D J, Kohmoto M, Nightingale M P and Nijs M D1982 Phys. Rev. Lett. 49 41 34 Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494 35 Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 36 Halperin B I 1982 Phys. Rev. B 25 2185 37 Mucha-Kruczynski M and Fal'ko V I 2012 Solid State Commun. 152 1442 38 Gradinar D A, Mucha-Kruczy\'nski M, Schomerus H and Fal'Ko V I 2013 Phys. Rev. Lett. 110 266801 39 Settnes M, Leconte N, Barrios-Vargas J E, Jauho A P and Roche S2016 D Mater. 3 34005 40 Roy B, Hu Z X and Yang K 2013 Phys. Rev. B 87 121408 41 Ghaemi P, Gopalakrishnan S and Ryu S 2013 Phys. Rev. B 87 155422 42 Costa D R da, Chaves A, Farias G A, Covaci L and Peeters F M 2012 Phys. Rev. B 86 115434 43 Mao J, Milovanovi\'c S P, An\=delkovi\'c M, Lai X Y, Cao Y, Watanabe K, Taniguchi T, Covaci L, Peeters F M, and Geim A K 2020 Nature 584 215 44 Settnes M, Garcia J H and Roche S2017 2D Mater. 4 31006 45 Anderson P W 1958 Phys. Rev. 109 1492 46 Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673 47 Pereira V M, Castro Neto A H, Peres N M R 2008 Phys. Rev. B. 80 045401 48 For zigzag graphene, the K and K' valleys are well separated in momentum space.Thus, PMFs for these two valleys are +B and -B, respectively. In contrast, for armchair graphene, both K and K' with opposite PMFs are folded into the \varGamma point, and the strong coupling of the two valleys greatly weaks the strain effect. Therefore, for armchair ribbons, the LLs and the chiral edge states will be formed by applying a real magnetic field, and the strain just tilt the LLs (except the zeroth LL) without affecting the properties of the edge state. 49 Lewenkopf C H and Mucciolo E R 2013 J. Comput. Electron. 12 203 50 Datta S1995 Electronic transport in mesoscopic systems, 2nd Edn. 51 Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 52 Zhang H, Liu C, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438 53 Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 54 Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167 55 Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S P, Bernevig B A and Neupert T2018 Sci. Adv. 4 6 56 Jiang H, Wang L, Sun Q F and Xie X C 2009 Phys. Rev. B 80 165316 57 Faria D, Le\'on C, Lima L R F, Latg\'e A and Sandler N 2020 Phys. Rev. B 101 81410 |