中国物理B ›› 2020, Vol. 29 ›› Issue (9): 97402-097402.doi: 10.1088/1674-1056/aba2e2

• • 上一篇    下一篇

Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers

Hai-Lin Huang(黄海林), Liang Zhu(朱亮), Hui Zhang(张慧), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Xiaobing Chen(陈晓冰), Yuan-Sha Chen(陈沅沙), Jian-Wang Cai(蔡建旺), Xue-Dong Bai(白雪冬), Feng-Xia Hu(胡凤霞), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣)   

  1. 1 Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
    2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
    3 Songshan Lake Materials Laboratory, Dongguan 523808, China
  • 收稿日期:2020-06-04 修回日期:2020-06-30 接受日期:2020-07-06 出版日期:2020-09-05 发布日期:2020-09-05
  • 通讯作者: Ji-Rong Sun E-mail:jrsun@iphy.ac.cn
  • 基金资助:
    Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0300701, 2017YFA0206300, 2017YFA0303601, and 2018YFA0305704), the National Natural Science Foundation of China (Grant Nos. 11520101002, 51590880, 11674378, 11934016, and 51972335), and the Key Program of the Chinese Academy of Sciences.

Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers

Hai-Lin Huang(黄海林)1,2, Liang Zhu(朱亮)1,2, Hui Zhang(张慧)1,2, Jin-E Zhang(张金娥)1,2, Fu-Rong Han(韩福荣)1,2, Jing-Hua Song(宋京华)1,2, Xiaobing Chen(陈晓冰)1,2, Yuan-Sha Chen(陈沅沙)1,2, Jian-Wang Cai(蔡建旺)1,2, Xue-Dong Bai(白雪冬)1,2, Feng-Xia Hu(胡凤霞)1,2, Bao-Gen Shen(沈保根)1,2,3, Ji-Rong Sun(孙继荣)1,2,3   

  1. 1 Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
    2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
    3 Songshan Lake Materials Laboratory, Dongguan 523808, China
  • Received:2020-06-04 Revised:2020-06-30 Accepted:2020-07-06 Online:2020-09-05 Published:2020-09-05
  • Contact: Ji-Rong Sun E-mail:jrsun@iphy.ac.cn
  • Supported by:
    Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0300701, 2017YFA0206300, 2017YFA0303601, and 2018YFA0305704), the National Natural Science Foundation of China (Grant Nos. 11520101002, 51590880, 11674378, 11934016, and 51972335), and the Key Program of the Chinese Academy of Sciences.

摘要: Grouping different oxide materials with coupled charge, spin, and orbital degrees of freedom together to form heterostructures provides a rich playground to explore the emergent interfacial phenomena. The perovskite/brownmillerite heterostructure is particularly interesting since symmetry mismatch may produce considerable interface reconstruction and unexpected physical effects. Here, we systemically study the magnetic anisotropy of tensely strained La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers with interface structures changing from perovskite/brownmillerite type to perovskite/perovskite type. Without Mn doping, the initial La2/3Sr1/3CoO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3CoO2.5+δ trilayer with perovskite/brownmillerite interface type exhibits perpendicular magnetic anisotropy and the maximal anisotropy constant is 3.385×106 erg/cm3, which is more than one orders of magnitude larger than that of same strained LSMO film. By increasing the Mn doping concentration, the anisotropy constant displays monotonic reduction and even changes from perpendicular magnetic anisotropy to in-plane magnetic anisotropy, which is possible because of the reduced CoO4 tetrahedra concentration in the La2/3Sr1/3Co1-xMnxO2.5+δ layers near the interface. Based on the analysis of the x-ray linear dichroism, the orbital reconstruction of Mn ions occurs at the interface of the trilayers and thus results in the controllable magnetic anisotropy.

关键词: perovskite/brownmillerite heterostructure, magnetic anisotropy, orbital reconstruction

Abstract: Grouping different oxide materials with coupled charge, spin, and orbital degrees of freedom together to form heterostructures provides a rich playground to explore the emergent interfacial phenomena. The perovskite/brownmillerite heterostructure is particularly interesting since symmetry mismatch may produce considerable interface reconstruction and unexpected physical effects. Here, we systemically study the magnetic anisotropy of tensely strained La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers with interface structures changing from perovskite/brownmillerite type to perovskite/perovskite type. Without Mn doping, the initial La2/3Sr1/3CoO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3CoO2.5+δ trilayer with perovskite/brownmillerite interface type exhibits perpendicular magnetic anisotropy and the maximal anisotropy constant is 3.385×106 erg/cm3, which is more than one orders of magnitude larger than that of same strained LSMO film. By increasing the Mn doping concentration, the anisotropy constant displays monotonic reduction and even changes from perpendicular magnetic anisotropy to in-plane magnetic anisotropy, which is possible because of the reduced CoO4 tetrahedra concentration in the La2/3Sr1/3Co1-xMnxO2.5+δ layers near the interface. Based on the analysis of the x-ray linear dichroism, the orbital reconstruction of Mn ions occurs at the interface of the trilayers and thus results in the controllable magnetic anisotropy.

Key words: perovskite/brownmillerite heterostructure, magnetic anisotropy, orbital reconstruction

中图分类号:  (Multilayers, superlattices, heterostructures)

  • 74.78.Fk
75.30.Gw (Magnetic anisotropy) 75.25.Dk (Orbital, charge, and other orders, including coupling of these orders)