中国物理B ›› 2020, Vol. 29 ›› Issue (8): 87103-087103.doi: 10.1088/1674-1056/ab943a

• SPECIAL TOPIC—Ultracold atom and its application in precision measurement • 上一篇    下一篇

Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation

Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明)   

  1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • 收稿日期:2020-03-13 修回日期:2020-05-18 出版日期:2020-08-05 发布日期:2020-08-05
  • 通讯作者: Cuixia Yan, Cuixia Yan E-mail:cuixiayan09@gmail.com;j.cai@kmsut.edu.cn
  • 基金资助:
    Project supported by the National Natural Science Foundation of China (Grant Nos. 11674136 and 11564022), Yunnan Province for Recruiting High-Caliber Technological Talents, China (Grant No. 1097816002), Reserve Talents for Yunnan Young and Middle-aged Academic and Technical Leaders, China (Grant No. 2017HB010), the Academic Qinglan Project of KUST (Grant No. 1407840010), the Analysis and Testing Fund of KUST (Grant No. 2017M20162230010), and the High-level Talents of KUST (Grant No. 1411909425).

Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation

Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明)   

  1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • Received:2020-03-13 Revised:2020-05-18 Online:2020-08-05 Published:2020-08-05
  • Contact: Cuixia Yan, Cuixia Yan E-mail:cuixiayan09@gmail.com;j.cai@kmsut.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Grant Nos. 11674136 and 11564022), Yunnan Province for Recruiting High-Caliber Technological Talents, China (Grant No. 1097816002), Reserve Talents for Yunnan Young and Middle-aged Academic and Technical Leaders, China (Grant No. 2017HB010), the Academic Qinglan Project of KUST (Grant No. 1407840010), the Analysis and Testing Fund of KUST (Grant No. 2017M20162230010), and the High-level Talents of KUST (Grant No. 1411909425).

摘要: The fascinating Dirac cone in honeycomb graphene, which underlies many unique electronic properties, has inspired the vast endeavors on pursuing new two-dimensional (2D) Dirac materials. Based on the density functional theory method, a 2D material Zn3Si2 of honeycomb transition-metal silicide with intrinsic Dirac cones has been predicted. The Zn3Si2 monolayer is dynamically and thermodynamically stable under ambient conditions. Importantly, the Zn3Si2 monolayer is a room-temperature 2D Dirac material with a spin-orbit coupling energy gap of 1.2 meV, which has an intrinsic Dirac cone arising from the special hexagonal lattice structure. Hole doping leads to the spin polarization of the electron, which results in a Dirac half-metal feature with single-spin Dirac fermion. This novel stable 2D transition-metal-silicon-framework material holds promises for electronic device applications in spintronics.

关键词: two-dimensional (2D) Dirac cone material, Dirac half-metal, first-principles calculation, spin-orbit coupling

Abstract: The fascinating Dirac cone in honeycomb graphene, which underlies many unique electronic properties, has inspired the vast endeavors on pursuing new two-dimensional (2D) Dirac materials. Based on the density functional theory method, a 2D material Zn3Si2 of honeycomb transition-metal silicide with intrinsic Dirac cones has been predicted. The Zn3Si2 monolayer is dynamically and thermodynamically stable under ambient conditions. Importantly, the Zn3Si2 monolayer is a room-temperature 2D Dirac material with a spin-orbit coupling energy gap of 1.2 meV, which has an intrinsic Dirac cone arising from the special hexagonal lattice structure. Hole doping leads to the spin polarization of the electron, which results in a Dirac half-metal feature with single-spin Dirac fermion. This novel stable 2D transition-metal-silicon-framework material holds promises for electronic device applications in spintronics.

Key words: two-dimensional (2D) Dirac cone material, Dirac half-metal, first-principles calculation, spin-orbit coupling

中图分类号:  (Density functional theory, local density approximation, gradient and other corrections)

  • 71.15.Mb
73.20.At (Surface states, band structure, electron density of states)