中国物理B ›› 2020, Vol. 29 ›› Issue (3): 34305-034305.doi: 10.1088/1674-1056/ab6c4f

• ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS • 上一篇    下一篇

Influence of dynamic tissue properties on temperature elevation and lesions during HIFU scanning therapy: Numerical simulation

Xiao Zou(邹孝), Hu Dong(董胡), Sheng-You Qian(钱盛友)   

  1. School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
  • 收稿日期:2019-12-20 修回日期:2020-01-12 出版日期:2020-03-05 发布日期:2020-03-05
  • 通讯作者: Sheng-You Qian E-mail:shyqian@hunnu.edu.cn
  • 基金资助:
    Project partially supported by the National Natural Science Foundation of China (Grant Nos. 11774088 and 11474090), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2016JJ3090 and 2018JJ3557), and the Scientific Research Fund of Hunan Provincial Education Department, China (Grant Nos. 16B155 and 17B025).

Influence of dynamic tissue properties on temperature elevation and lesions during HIFU scanning therapy: Numerical simulation

Xiao Zou(邹孝), Hu Dong(董胡), Sheng-You Qian(钱盛友)   

  1. School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
  • Received:2019-12-20 Revised:2020-01-12 Online:2020-03-05 Published:2020-03-05
  • Contact: Sheng-You Qian E-mail:shyqian@hunnu.edu.cn
  • Supported by:
    Project partially supported by the National Natural Science Foundation of China (Grant Nos. 11774088 and 11474090), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2016JJ3090 and 2018JJ3557), and the Scientific Research Fund of Hunan Provincial Education Department, China (Grant Nos. 16B155 and 17B025).

摘要: When large tumors are treated, ablation of the entire volume of tumors requires multiple treatment spots formed by high intensity-focused ultrasound (HIFU) scanning therapy. The heating effect of HIFU on biological tissue is mainly reflected in temperature elevation and tissue lesions. Tissue property parameters vary with temperature and, in turn, the distribution of temperature as well as the heating effects change accordingly. In this study, an HIFU scanning therapy model considering dynamic tissue properties is provided. The acoustic fields and temperature fields are solved combining the Helmholtz wave equation with Pennes bio-heat transfer equation based on the finite element method (FEM) to investigate the effects of various tissue properties (i.e., the attenuation coefficient, acoustic velocity, thermal conductivity, specific heat capacity, density, and blood perfusion rate) on heating performance. Comparisons of the temperature distribution and thermal lesions under static and dynamic properties are made based on the data of tissue property parameters varying with temperature. The results show that the dynamic changes of thermal conductivity, specific heat capacity, and acoustic velocity may account for the decrease of temperature elevation in HIFU treatment, while the dynamic changes of attenuation coefficient, density, and blood perfusion rate aggravate the increase of temperature on treatment spots. Compared with other properties, the dynamic change of attenuation coefficient has a greater impact on tissue temperature elevation. During HIFU scanning therapy, the temperature elevation and tissue lesions of the first treatment spot are smaller than those of the subsequent treatment spots, but the temperature on the last treatment spot drops faster during the cooling period. The ellipsoidal tissue lesion is not symmetrical; specifically, the part facing toward the previous treatment spot tends to be larger. Under the condition of the same doses, the temperature elevation and the size of tissue lesions under dynamic properties present significant growth in comparison to static properties. Besides, the tissue lesion begins to form earlier with a more unsymmetrical shape and is connected to the tissue lesion around the previous treatment spot. As a result, lesions around all the treatment spots are connected with each other to form a closed lesion region. The findings in this study reveal the influence of dynamic tissue properties on temperature elevation and lesions during HIFU scanning therapy, providing useful support for the optimization of treatment programs to guarantee higher efficacy and safety.

关键词: high intensity-focused ultrasound (HIFU), temperature elevation, tissue lesions, dynamic tissue properties

Abstract: When large tumors are treated, ablation of the entire volume of tumors requires multiple treatment spots formed by high intensity-focused ultrasound (HIFU) scanning therapy. The heating effect of HIFU on biological tissue is mainly reflected in temperature elevation and tissue lesions. Tissue property parameters vary with temperature and, in turn, the distribution of temperature as well as the heating effects change accordingly. In this study, an HIFU scanning therapy model considering dynamic tissue properties is provided. The acoustic fields and temperature fields are solved combining the Helmholtz wave equation with Pennes bio-heat transfer equation based on the finite element method (FEM) to investigate the effects of various tissue properties (i.e., the attenuation coefficient, acoustic velocity, thermal conductivity, specific heat capacity, density, and blood perfusion rate) on heating performance. Comparisons of the temperature distribution and thermal lesions under static and dynamic properties are made based on the data of tissue property parameters varying with temperature. The results show that the dynamic changes of thermal conductivity, specific heat capacity, and acoustic velocity may account for the decrease of temperature elevation in HIFU treatment, while the dynamic changes of attenuation coefficient, density, and blood perfusion rate aggravate the increase of temperature on treatment spots. Compared with other properties, the dynamic change of attenuation coefficient has a greater impact on tissue temperature elevation. During HIFU scanning therapy, the temperature elevation and tissue lesions of the first treatment spot are smaller than those of the subsequent treatment spots, but the temperature on the last treatment spot drops faster during the cooling period. The ellipsoidal tissue lesion is not symmetrical; specifically, the part facing toward the previous treatment spot tends to be larger. Under the condition of the same doses, the temperature elevation and the size of tissue lesions under dynamic properties present significant growth in comparison to static properties. Besides, the tissue lesion begins to form earlier with a more unsymmetrical shape and is connected to the tissue lesion around the previous treatment spot. As a result, lesions around all the treatment spots are connected with each other to form a closed lesion region. The findings in this study reveal the influence of dynamic tissue properties on temperature elevation and lesions during HIFU scanning therapy, providing useful support for the optimization of treatment programs to guarantee higher efficacy and safety.

Key words: high intensity-focused ultrasound (HIFU), temperature elevation, tissue lesions, dynamic tissue properties

中图分类号:  (Ultrasonics, quantum acoustics, and physical effects of sound)

  • 43.35.+d
43.80.+p (Bioacoustics)