中国物理B ›› 2018, Vol. 27 ›› Issue (6): 66103-066103.doi: 10.1088/1674-1056/27/6/066103
• CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES • 上一篇 下一篇
Cheng Zhang(张诚), Shaolong Tang(唐少龙), Mingsen Deng(邓明森), Youwei Du(都有为)
Cheng Zhang(张诚)1,2, Shaolong Tang(唐少龙)2, Mingsen Deng(邓明森)3, Youwei Du(都有为)2
摘要: Based on the first-principles plane wave calculations, we show that Li adsorbed on monolayer and bilayer MoS2 forming a uniform and stable coverage can serve as a high-capacity hydrogen storage medium, and Li-coated MoS2 can be recycled by operations at room temperature due to Li having strength binding, big separation and is stable against clustering. The full Li coverage MoS2 system (2*2 hexagonal MoS2 supercell) can reach up to eight H2 molecules on every side, corresponding to the gravimetric density of hydrogen storage up to 4.8 wt% and 2.5 wt% in monolayer and bilayer MoS2, respectively. The adsorption energies of hydrogen molecules are in the range of 0.10eV/H2-0.25 eV/H2, which are acceptable for reversible H2 adsorption/desorption near ambient temperature. In addition, compared with light metals decorated low dimension carbon-based materials, the sandwiched structure of MoS2 exhibits the greatly enhanced binding stability of Li atoms as well as slightly decreased Li-Li interaction and thus avoids the problem of metal clustering. It is interesting to note that the Li atom apart from the electrostatic interaction, acts as a bridge of hybridization between the S atoms of MoS2 and adsorbed H2 molecules. The encouraging results show that such light metals decorated with MoS2 have great potential in developing high performance hydrogen storage materials.
中图分类号: (Structure of nanoscale materials)