中国物理B ›› 2016, Vol. 25 ›› Issue (2): 24101-024101.doi: 10.1088/1674-1056/25/2/024101
• ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS • 上一篇 下一篇
Zheng Sun(孙正), Hui Ning(宁辉), Jing Tang(唐敬), Yong-Jie Xie(谢永杰), Peng-Fei Shi(石鹏飞), Jian-Hua Wang(王建华), Ke Wang(王柯)
Zheng Sun(孙正), Hui Ning(宁辉), Jing Tang(唐敬), Yong-Jie Xie(谢永杰), Peng-Fei Shi(石鹏飞), Jian-Hua Wang(王建华), Ke Wang(王柯)
摘要: Atmospheric duct is a common phenomenon over large bodies of water, and it can significantly affect the performance of many radio systems. In this paper, a two-month (in July and August, 2014) sounding experiment in ducting conditions over Bosten Lake was carried out at a littoral station (41.89° N, 87.22° E) with high resolution GPS radiosondes, and atmospheric ducts were observed for the first time in this area. During the two months, surface and surface-based ducts occurred frequently over the Lake. Strong diurnal variations in ducting characteristics were noticed in clear days. Ducting occurrence was found at its lowest in the early morning and at its highest (nearly 100%) in the afternoon. Duct strength was found increasing from early morning to forenoon, and reaching its maximum in the afternoon. But contrarily, duct altitude experienced a decrease in a clear day. Then the meteorological reasons for the variations were discussed in detail, turbulent bursting was a possible reason for the duct formation in the early morning and the prevailing lake-breeze front was the main reason in the afternoon. The propagation of electromagnetic wave in a ducting environment was also investigated. A ray-tracing framework based on Runge-Kutta method was proposed to assess the performance of radio systems, and the precise critical angle and grazing angle derived from the ray-tracing equations were provided. Finally, numerical investigations on the radar performance in the observed ducting environments have been carried out with high accuracy, which demonstrated that atmospheric ducts had made great impacts on the performance of radio systems. The range/height errors for radar measurement induced by refraction have also been presented, too, which shows that the height errors were very large for trapped rays when the total range was long enough.
中图分类号: (Electromagnetic wave propagation; radiowave propagation)