中国物理B ›› 2015, Vol. 24 ›› Issue (5): 59101-059101.doi: 10.1088/1674-1056/24/5/059101
• GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS • 上一篇 下一篇
Levent Paralıa, İsrafil Şabikoğlub, Jiri Tucekc, Jiri Pechousekc, Petr Novakc, Jakub Navarikc
Levent Paralia, İsrafil Şabikoğlub, Jiri Tucekc, Jiri Pechousekc, Petr Novakc, Jakub Navarikc
摘要: In this study, dielectric properties within 8–12 GHz microwave frequencies, inductively coupled plasma-atomic emission spectrometry, Fourier transform infrared spectrometry, synchronized two thermal analyses, and 57Fe Mössbauer spectroscopy analysis of chalcedony, agate, and zultanite samples from Turkey are presented. Agate and chalcedony show the same nine vibrational absorption peaks obtained unlike zultanite from FTIR spectra in the 350 cm-1 to 4000 cm-1 range, ε' values of chalcedony, agate and zultanite derived at 10.5 GHz were 4.67, 4.41, and 7.34, respectively, ε' and ε" values of the studied samples at the microwave frequencies are related to the percentage weight of their constituent parts in their chemical compositions. 57Fe Mössbauer spectroscopy results confirm the existence of iron-containing islands in the crystal structure of zultanite, agate, and chalcedony samples, equipped them with magnetic features typical for magnetic nanoparticles including superparamagnetism. The presence of iron-containing islands significantly affects the magnetic, dielectric, and optical properties of studied samples that are not observed for pure minerals without any foreign inclusions.
中图分类号: (Optical properties)