中国物理B ›› 2014, Vol. 23 ›› Issue (6): 63201-063201.doi: 10.1088/1674-1056/23/6/063201
• ATOMIC AND MOLECULAR PHYSICS • 上一篇 下一篇
柯汉平, 陈浩, 林雁勤, 韦芝良, 蔡淑惠, 张志勇, 陈忠
Ke Han-Ping (柯汉平), Chen Hao (陈浩), Lin Yan-Qin (林雁勤), Wei Zhi-Liang (韦芝良), Cai Shu-Hui (蔡淑惠), Zhang Zhi-Yong (张志勇), Chen Zhong (陈忠)
摘要: In many cases, high-resolution nuclear magnetic resonance (NMR) spectra are virtually impossible to obtain by conventional nuclear magnetic resonance methods because of inhomogeneity of magnetic field and inherent heterogeneity of sample. Although conventional intramolecular zero-quantum coherence (ZQC) can be used to obtain high-resolution spectrum in inhomogeneous field, the acquisition takes rather long time. In this paper, a spatially encoded intramolecular ZQC technique is proposed to fast acquire high-resolution NMR spectrum in inhomogeneous field. For the first time, the gradient-driven decoding technique is employed to selectively acquire intramolecular ZQC signals. Theoretical analyses and experimental observations demonstrate that high-resolution NMR spectral information can be retrieved within several scans even when the field inhomogeneity is severe enough to erase most spectral information. This work provides a new way to enhance the acquisition efficiency of high-resolution intramolecular ZQC spectroscopy in inhomogeneous fields.
中图分类号: (Magnetic resonance spectra)