中国物理B ›› 2011, Vol. 20 ›› Issue (4): 40203-040203.doi: 10.1088/1674-1056/20/4/040203
王欢, 李彪
收稿日期:
2010-08-13
修回日期:
2011-01-10
出版日期:
2011-04-15
发布日期:
2011-04-15
基金资助:
Wang Huan(王欢) and Li Biao(李彪)†
Received:
2010-08-13
Revised:
2011-01-10
Online:
2011-04-15
Published:
2011-04-15
Supported by:
摘要: In this paper, we investigate some exact soliton solutions for a generalized variable-coefficients nonlinear Schrödinger equation (NLS) with an arbitrary time-dependent linear potential which describes the dynamics of soliton solutions in quasi-one-dimensional Bose-Einstein condensations. Under some reasonable assumptions, one-soliton and two-soliton solutions are constructed analytically by the Hirota method. From our results, some previous one- and two-soliton solutions for some NLS-type equations can be recovered by some appropriate selection of the various parameters. Some figures are given to demonstrate some properties of the one- and the two-soliton and the discussion about the integrability property and the Hirota method is given finally.
中图分类号: (Partial differential equations)
王欢, 李彪. Solitons for a generalized variable-coefficient nonlinear Schrödinger equation[J]. 中国物理B, 2011, 20(4): 40203-040203.
Wang Huan(王欢) and Li Biao(李彪) . Solitons for a generalized variable-coefficient nonlinear Schrödinger equation[J]. Chin. Phys. B, 2011, 20(4): 40203-040203.
[1] | Gu C H, Hu H S and Zhou Z X 1999 Darboux Transformation in Soliton Theory and Its Geometric Applications (Shanghai: Shanghai Scientific and Technical Press) (in Chinse) |
[2] | Ablowitz M J and Clarkson P A 1991 Soliton, Nonlinear Evolution Equations and Inverse Scattering (New York: Cambridge University Press) bibitem 3 Bluman G W and Anco S C 2002 Symmetry and Integration Methods for Differential Equations (New York: Springer) bibitem 4Yao R X, Jiao X Y and Lou S Y 2009 Chin. Phys. B 18 1821 bibitem 5Wang Y F, Lou S Y and Qian X M 2010 Chin. Phys. B 19 050202 bibitem 6Jiao X Y and Lou S Y 2009 Chin. Phys. B 18 3611 |
[7] | Hu X R, Chen Y and Huang F 2010 Chin. Phys. B 19 080203 |
[8] | Clarkson P A and Kruskal M D 1989 J. Math. Phys. 30 2201 |
[9] | Lou S Y, Tang X Y and Lin J 2000 J. Math. Phys. 2000 41 8286 |
[10] | Tang X Y, Qian X M, Lin J and Lou S Y 2004 J. Phys. Soc. Jpn. 73 1464 |
[11] | Lou S Y and Ma H C 2005 J. Phys. A: Math. Gen. 38 L129 bibitem 12Ma H C and Lou S Y 2005 Chin. Phys. 14 1495 |
[13] | Li B, Ye W C and Chen Y 2008 J. Math. Phys. 49 103503 bibitem 14Li B, Li Y Q and Chen Y 2009 Commun. Theor. Phys. 50 773 |
[15] | Wang J and Li B 2009 Chin. Phys. B 18 2109 bibitem 16Zhang H P, Li B, Chen Y and Huang F 2010 Chin. Phys. B 19 020201 |
[17] | Hirota R 1971 Phys. Rev. Lett. 27 1192 |
[18] | Li Z B and Liu Y P 2002 Comput. Phys. Commun. 148 256 |
[19] | Fan E 2000 Phys. Lett. A 277 212 |
[20] | Yan Z Y 2001 Phys. Lett. A 292 100 |
[21] | Lü Z S and Zhang H Q 2003 Chaos, Solitons and Fractals 17 669 |
[22] | Li B, Chen Y and Zhang H Q 2002 J. Phys. A: Math. Gen. 35 8253 |
[23] | Gao Y T and Tian B 2001 Comput. Phys. Commun. 133 158 |
[24] | Lou S Y 2000 Phys. Lett. A 277 94 bibitem 25Lou S Y and Ruan H Y 2001 J. Phys. A: Math. Gen. 34 305 bibitem 26Tang X Y, Lou S Y and Zhang Y 2002 Phys. Rev. E 66 046601 bibitem 27Li W, Liu S B and Yang W 2010 Chin. Phys. B 19 030307 |
[28] | Li B, Chen Y and Li Y Q 2008 Z. Naturforsch. 63a 763 bibitem 29Li B 2007 Int. J. Mod. Phys. C 18 1187 bibitem 30Zhang H P, Li B and Chen Y 2010 Chin. Phys. B 19 060302 |
[31] | Fan E G 2003 J. Phys. A: Math. Gen. 36 7009 |
[32] | Yan Z Y 2004 Chaos, Solitons and Fractals 21 1013 |
[33] | Li Z D and Li Q Y 2007 Ann. Phys. 322 1961 bibitem 34Song W W, Li Q Y, Li Z D and Fu G S 2010 Chin. Phys. B 19 070503 |
[35] | Wu Y Q 2010 Chin. Phys. B 19 040304 |
[36] | Bronski J C, Carr L D, Deconinck B and Kutz J N 2001 Phys. Rev. Lett. 86 1402 |
[37] | Dum R, Cirac J I, Lewenstein M and Zoller P 1998 Phys. Rev. Lett. 80 2972 |
[38] | Wang D S, Hu X H, Hu J P and Liu W M 2010 Phys. Rev. A 81 025604 |
[39] | Li Z D, Li Q Y, He P B, Liang J Q and Liu W M 2010 Phys. Rev. A 81 015602 |
[40] | Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402 |
[41] | Zhang X F, Yang Q, Zhang J F, Chen X Z and Liu W M 2008 Phys. Rev. A 77 023613 |
[42] | Li B and Chen Y 2007 Commun. Theor. Phys. 48 391 |
[43] | Li B, Zhang X F, Li Y Q, Chen Y and Liu W M 2008 Phys. Rev. A 78 023608 |
[44] | Yang Q and Zhang J F 2006 Opt. Commun. 258 35 |
[45] | Kagan Y, Muryshev A E and Shlyapnikov G V 1998 Phys. Rev. Lett. 81 933 |
[46] | Li Q Y, Li Z D, Wang S X, Song W W and Fu G S 2009 Opt. Commun. 282 1676 |
[47] | Li Z D, Li Q Y, Hu X H, Zheng Z X, Sun Y B 2007 Ann. Phys. 322 2545 |
[48] | Li Z D, Li Q Y, He P B, Bai Z G and Sun Y B 2007 Ann. Phys. 322 2945 |
[49] | Khawaja U A 2007 Phys. Rev. E 75 066607 |
[50] | Serkin V N, Hasegawa A and Belyaeva T L 2007 Phys. Rev. Lett. 98 074102 |
[51] | Kivshar and Malomed B A 1989 Rev. Mod. Phys. 61 763 |
|