中国物理B ›› 2010, Vol. 19 ›› Issue (2): 20511-020511.doi: 10.1088/1674-1056/19/2/020511
徐振源1, 过榴晓1, 胡爱花2
收稿日期:
2009-02-18
修回日期:
2009-08-05
出版日期:
2010-02-15
发布日期:
2010-02-15
基金资助:
Hu Ai-Hua(胡爱花)a)b)†, Xu Zhen-Yuan(徐振源)a), and Guo Liu-Xiao(过榴晓)a)
Received:
2009-02-18
Revised:
2009-08-05
Online:
2010-02-15
Published:
2010-02-15
Supported by:
摘要: The existence of two types of generalized synchronisation is studied. The model considered here includes three bidirectionally coupled chaotic systems, and two of them denote the driving systems, while the rest stands for the response system. Under certain conditions, the existence of generalised synchronisation can be turned to a problem of compression fixed point in the family of Lipschitz functions. In addition, theoretical proofs are proposed to the exponential attractive property of generalised synchronisation manifold. Numerical simulations validate the theory.
中图分类号: (Synchronization; coupled oscillators)
胡爱花, 徐振源, 过榴晓. The existence of generalized synchronisation of three bidirectionally coupled chaotic systems[J]. 中国物理B, 2010, 19(2): 20511-020511.
Hu Ai-Hua(胡爱花), Xu Zhen-Yuan(徐振源), and Guo Liu-Xiao(过榴晓). The existence of generalized synchronisation of three bidirectionally coupled chaotic systems[J]. Chin. Phys. B, 2010, 19(2): 20511-020511.
[1] | Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821 |
[2] | Liu Y Z, Jiang C S and Lin C S 2007 Acta Phys. Sin. 56 707 (in Chinese) |
[3] | Qin J and Yu H J 2007 Acta Phys. Sin. 56 6828 (inChinese) |
[4] | Hu A H and Xu Z Y 2008 Phys. Lett. A 372 3814 |
[5] | Yu X, Zhu S J and Liu S Y 2008 Acta Phys. Sin. 57 2761 (in Chinese) |
[6] | Hu A H and Xu Z Y 2007 Acta Phys. Sin. 56 3132 (inChinese) |
[7] | Liu Y J, Zhang S H and Qian X Z 2007 Chin. Phys. 16 463 |
[8] | Liu Y Z, Jiang C S, Lin C S and Jiang Y M 2007 Chin. Phys. 16 660 |
[9] | Kong C C and Chen S H 2009 Chin. Phys. B 18 91 |
[10] | González-Miranda J M 2002 Phys. Rev. E 65047202 |
[11] | Rogers E, Kalra R and Schroll R 2004 Phys. Rev. Lett. 9 3 084101 |
[12] | Nikolai F R, Mikhail M S and Tsimring L S 1995 Phys.Rev. E 51 980 |
[13] | Henry D I A, Nikolai F R and Mikhail M S 1996 Phys.Rev. E 5 3 4528 |
[14] | Kocarev L and Parlitz U 1996 Phys. Rev. Lett. 761816 |
[15] | Alexander E H and Alexey A K 2005 Phys. Rev. E 71067201 |
[16] | Li F, Hu A H and Xu Z Y 2006 Acta Phys. Sin. 55 590(in Chinese) |
[17] | Zhang R and Xu Z Y 2008 J. Sys. Sci. & Math. Scis. 28 1509 (in Chinese) |
[18] | Guo L X and Xu Z Y 2008 Acta Phys. Sin. 57 6086 (inChinese) |
[19] | Guo L X and Xu Z Y 2008 Chaos 18 033134 |
[20] | Hu A H, Xu Z Y and Guo L X 2009 Acta Phys. Sin. 586030 (in Chinese) |
[21] | Wang R H and Wu Z Q 1979 Lectures on Ordinary DifferentialEquations(Beijing: People's Education Press) (in Chinese) |
[22] | Ling Z S 1986 Almost Periodic Differential Equation andIntegral Manifold (Shanghai: Shanghai Science and Technology Press)(in Chinese) |
[23] | Lu J A, Wu X Q and Lü J H 2002 Phys. Lett. A 305 365 |
[24] | Lorenz 1963 J. Atmos. Sci. 20 130 |
[25] | Lü J H and Chen G R 2002 Int. J. Bifur. Chaos 12 659 |
[26] | Chen G R and Ueta T 1999 Int. J. Bifur. Chaos 91465 |
[27] | Lü J H, Han F L, Yu X H and Chen G R 2004 Automatica 40 1677 |
[28] | Lü J H, Yu S M, Leung H and Chen G R 2006 IEEE Trans.Circuits Syst. I 53 149 |
[1] | Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Influence of coupling asymmetry on signal amplification in a three-node motif[J]. 中国物理B, 2023, 32(1): 10504-010504. |
[2] | Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application[J]. 中国物理B, 2022, 31(11): 110501-110501. |
[3] | Yun-Xu Ma(马云旭), Jia-Ning Wang(王佳宁), Zhao-Zhuo Zeng(曾钊卓), Ying-Yue Yuan(袁映月), Jin-Xia Yang(杨金霞), Hui-Bo Liu(刘慧博), Sen-Fu Zhang(张森富), Jian-Bo Wang(王建波), Chen-Dong Jin(金晨东), and Qing-Fang Liu(刘青芳). Spin transfer nano-oscillator based on synthetic antiferromagnetic skyrmion pair assisted by perpendicular fixed magnetic field[J]. 中国物理B, 2022, 31(10): 100501-100501. |
[4] | Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control[J]. 中国物理B, 2022, 31(10): 100504-100504. |
[5] | Tao Li(李涛), Lin Yan(严霖), and Zhigang Zheng(郑志刚). Improved functional-weight approach to oscillatory patterns in excitable networks[J]. 中国物理B, 2022, 31(9): 90502-090502. |
[6] | Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Power-law statistics of synchronous transition in inhibitory neuronal networks[J]. 中国物理B, 2022, 31(8): 80505-080505. |
[7] | Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Synchronization in multilayer networks through different coupling mechanisms[J]. 中国物理B, 2022, 31(4): 48901-048901. |
[8] | Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Robust H∞ state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks[J]. 中国物理B, 2022, 31(2): 20503-020503. |
[9] | Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Explosive synchronization: From synthetic to real-world networks[J]. 中国物理B, 2022, 31(2): 20504-020504. |
[10] | Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex[J]. 中国物理B, 2022, 31(2): 28901-028901. |
[11] | Dong-Jie Qian(钱冬杰). Explosive synchronization in a mobile network in the presence of a positive feedback mechanism[J]. 中国物理B, 2022, 31(1): 10503-010503. |
[12] | Yan-Liang Jin(金彦亮), Run-Zhu Guo(郭润珠), Xiao-Qi Yu(于晓琪), and Li-Quan Shen(沈礼权). Explosive synchronization of multi-layer complex networks based on inter-layer star network connection[J]. 中国物理B, 2021, 30(12): 120505-120505. |
[13] | Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay[J]. 中国物理B, 2021, 30(12): 120503-120503. |
[14] | Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control[J]. 中国物理B, 2021, 30(12): 120512-120512. |
[15] | Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Adaptive synchronization of chaotic systems with less measurement and actuation[J]. 中国物理B, 2021, 30(10): 100503-100503. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 31
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 469
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
|