中国物理B ›› 2007, Vol. 16 ›› Issue (3): 611-620.doi: 10.1088/1009-1963/16/3/009
姚玉芹, 陈登远
Yao Yu-Qin(姚玉芹)† and Chen Deng-Yuan(陈登远)
摘要: The trace identity is extended to the general loop algebra. The Hamiltonian structures of the integrable systems concerning vector spectral problems and the multi-component integrable hierarchy can be worked out by using the extended trace identity. As its application, we have obtained the Hamiltonian structures of the Yang hierarchy, the Korteweg-de--Vries (KdV) hierarchy, the multi-component Ablowitz--Kaup--Newell--Segur (M-AKNS) hierarchy, the multi-component Ablowitz--Kaup--Newell--Segur Kaup--Newell (M-AKNS--KN) hierarchy and a new multi-component integrable hierarchy separately.
中图分类号: (Solitons)