中国物理B ›› 2001, Vol. 10 ›› Issue (10): 924-928.doi: 10.1088/1009-1963/10/10/308

• • 上一篇    下一篇

TRIGONOMETRIC SU(N) GAUDIN MODEL

曹俊鹏, 侯伯宇, 岳瑞宏   

  1. Institute of Modern Physics, Northwest University, Xi'an 710069, China
  • 收稿日期:2001-03-05 修回日期:2001-05-20 出版日期:2001-10-15 发布日期:2005-06-12
  • 基金资助:
    Project supported by the National Natural Science Foundation of China (Grant No. 19975036).

TRIGONOMETRIC $SU(N)$ GAUDIN MODEL

Cao Jun-peng (曹俊鹏), Hou Bo-yu (侯伯宇), Yue Rui-hong (岳瑞宏)   

  1. Institute of Modern Physics, Northwest University, Xi'an 710069, China
  • Received:2001-03-05 Revised:2001-05-20 Online:2001-10-15 Published:2005-06-12
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Grant No. 19975036).

摘要: In this paper, we obtain the eigenstates and the eigenvalues of the Hamiltonians of the trigonometric $SU(N)$ Gaudin model based on the quasi-classical limit of the trigonometric $SU(N)$ chain with the periodic boundary condition. By using the quantum inverse scattering method, we also obtain the eigenvalues of the generating function of the trigonometric $SU(N)$ Gaudin model.

Abstract: In this paper, we obtain the eigenstates and the eigenvalues of the Hamiltonians of the trigonometric $SU(N)$ Gaudin model based on the quasi-classical limit of the trigonometric $SU(N)$ chain with the periodic boundary condition. By using the quantum inverse scattering method, we also obtain the eigenvalues of the generating function of the trigonometric $SU(N)$ Gaudin model.

Key words: Gaudin model, quantum determinant, trigonometric SU(N) chain

中图分类号:  (Algebraic methods)

  • 03.65.Fd
03.65.Sq (Semiclassical theories and applications) 02.10.Ud (Linear algebra) 02.20.Sv (Lie algebras of Lie groups)