An efficient three-party password-based key agreement protocol using extended chaotic maps

Shu Jian(a) b)†

a) Department of Electronic Commerce, Jiangxi University of Finance and Economics, Nanchang 330013, China
b) School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

(Received 10 September 2014; revised manuscript received 17 December 2014; published online 10 April 2015)

Three-party password-based key agreement protocols allow two users to authenticate each other via a public channel and establish a session key with the aid of a trusted server. Recently, Farash et al.[Farash M S, Attari M A 2014 “An efficient and provably secure three-party password-based authenticated key exchange protocol based on Chebyshev chaotic maps”, Nonlinear Dynamics 77(7): 399–411] proposed a three-party key agreement protocol by using the extended chaotic maps. They claimed that their protocol could achieve strong security. In the present paper, we analyze Farash et al.’s protocol and point out that this protocol is vulnerable to off-line password guessing attack and suffers communication burden. To handle the issue, we propose an efficient three-party password-based key agreement protocol using extended chaotic maps, which uses neither symmetric cryptosystems nor the server’s public key. Compared with the relevant schemes, our protocol provides better performance in terms of computation and communication. Therefore, it is suitable for practical applications.

Keywords: key agreement protocol, trusted server, extended chaotic maps, strong security

PACS: 05.45.Vx, 05.45.–a

DOI: 10.1088/1674-1056/24/6/060509

1. Introduction

Characterized by sensitive reliance on initial conditions, unpredictability, pseudo-randomness, and ergodicity, the chaotic system can be used to design a cryptosystem. Over the past decades, the secret key system based on chaos theory has been studied widely to be applied as hash functions,[1,2] symmetric encryption schemes,[3–5] and stream ciphers.[6,7]

In recent years, the chaotic map has also been used to design public encryption schemes and key agreement protocols. The key agreement protocol is one of the most important cryptography mechanisms since it allows parties to authenticate each other and establish a shared secret key for the subsequent communication. In 1976, Diffie and Hellman first proposed a key agreement protocol.[8] According to the modular exponentiation operation or scalar multiplication operation on elliptic curves, researchers have proposed many key agreement protocols for different applications.[9–13] As the theory and application of chaos develop significantly, chaos has become a promising candidate in the field of cryptography. Therefore, it is of practical significance to design efficient and secure key agreement protocols using the chaotic maps.

According to a chaotic public key cryptosystem, Xiao et al. first proposed a key agreement protocol in 2007.[14] Unfortunately, Han demonstrated that their protocol is not secure.[15] Xiang also pointed out that Xiao et al.’s protocol suffers the off-line password guessing attack.[16] On the basis of a chaotic map, Tseng et al. proposed a key agreement protocol that preserves user anonymity.[17] However, Niu and Wang pointed out that Tseng et al.’s protocol cannot withstand an insider attack, and cannot provide the perfect forward security either.[18] To solve the problems, Niu and Wang proposed an improved scheme.[18] However, Yoon pointed out that Niu and Wang’s protocol cannot resist the denial of service attack.[19] According to Tseng et al.’s protocol, Xue and Hong presented a chaotic map-based key agreement protocol.[20] However, Tan demonstrated that Xue and Hong’s protocol is vulnerable to the man-in-the-middle attack.[21] Based on the extended chaotic map, Lee et al. proposed an anonymous key agreement protocol.[22] Unfortunately, He et al. pointed out that Lee et al.’s protocol cannot resist the denial of service attack.[23] In 2014, Shu proposed a secure chaotic map-based key agreement protocol without smart cards.[24] The protocols mentioned above were designed in the client-server environment.[14–24] For large-scale server–server or client–client environments, these protocols are inconvenient since each participant has to remember different passwords for the intended peer. The shared password will cause the key management problems. To handle this issue, many key agreement protocols in three-party settings have been developed.[25–32] In a three-party key agreement protocol, two users can authenticate each other and establish a session key with the aid of a trusted server. In this way, each user only needs to remember a password with the server, which eliminates the key management problems.

In 2012, Lai et al. first presented a three-party key agreement protocol by using the extended chaotic map.[25] Later,
In this section, we will review the Chebyshev chaotic map and some hard problems based on it.

Definition 1 Let n be an integer and x be a variable taking values over the interval \([-1, 1]\). The Chebyshev polynomial map \(T_n : R \rightarrow R\) is defined by the following recursive relation:
\[T_0(x) = 2xT_{n-1}(x) - T_{n-2}(x), \quad n \geq 2, \quad T_0(x) = 1 \quad \text{and} \quad T_1(x) = x. \]

Definition 2 The Chebyshev polynomial achieves the semi-group property:
\[T_i(T_j(x)) = T_{ij}(x). \]

Obviously, the Chebyshev polynomial satisfies the commutative property under composition. Thus, \(T_i(T_j(x)) = T_j(T_i(x))\).

To avoid the periodicity of the cosine function, Zhang extended the interval \((-1, 1)\) to \((-\infty, +\infty)\) and proved that the semi-group property still holds for the Chebyshev polynomial defined in the interval \((-\infty, +\infty)\), which can be defined as follows:
\[T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x) \mod P, \quad \text{where } n \geq 2, x \in (-\infty, +\infty), \quad \text{and } P \text{ is a large prime number.} \]

The extended Chebyshev polynomial also satisfies the commutative property under composition.

Moreover, three problems about the extended Chebyshev polynomial are assumed to be intractable within polynomial time.

Definition 3 Discrete logarithm (DL) problem: Given three elements \(x \in (-\infty, +\infty), y \in Z_n\) and \(P\) that is a large prime number, the task of the discrete logarithm problem (DLP) is to find an integer \(r\) which satisfies \(y = T_r(x) \mod P\).

Definition 4 Computational Diffie–Hellman (CDH) problem: \(P\) is a large prime number, given four elements \(x \in (-\infty, +\infty), T_r(x) \mod P, T_s(x) \mod P, \text{ and } T_{rs}(x) \mod P\), the task of the computational Diffie–Hellman problem (CDHP) is to compute \(T_{rs}(x) \mod P\) without knowing values \(r, s\), and \(\omega\).

Definition 5 Decisional Diffie–Hellman (DDH) problem: \(P\) is a large prime number, given four elements \(x \in (-\infty, +\infty), T_r(x) \mod P, T_s(x) \mod P, \text{ and } T_{rs}(x) \mod P\), the task of the decisional Diffie–Hellman problem (DDHP) is to determine whether \(T_{rs}(x)\) and \(T_{\omega}(x)\) are equal without knowing values \(r, s, \text{ and } \omega\).

3. Review and analysis of Farash et al.’s protocol

In this section, we review Farash et al.’s protocol based on an extended chaotic map. The notations used throughout the paper are summarized in Table 1.

<table>
<thead>
<tr>
<th>Notations</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B</td>
<td>legitimate users</td>
</tr>
<tr>
<td>S</td>
<td>a remote server</td>
</tr>
<tr>
<td>IDi</td>
<td>user i’s identity</td>
</tr>
<tr>
<td>pwi</td>
<td>user i’s password</td>
</tr>
<tr>
<td>s</td>
<td>secret key of the server S</td>
</tr>
<tr>
<td>rA, rB, rs1, rs2</td>
<td>eight random integers</td>
</tr>
<tr>
<td>a, b, S1, S2</td>
<td>a large prime number</td>
</tr>
<tr>
<td>H1</td>
<td>a one-way hash function, where (H_1 : {0, 1}^* \rightarrow Z_P)</td>
</tr>
<tr>
<td>H</td>
<td>a one-way hash function, where (H : {0, 1}^* \rightarrow {0, 1})</td>
</tr>
<tr>
<td>Ts(x), Tn(x)</td>
<td>Chebyshev polynomial of degree n</td>
</tr>
<tr>
<td>Kij</td>
<td>Chebyshev polynomial calculated by participant i and participant j</td>
</tr>
<tr>
<td>Zij</td>
<td>the authentication message for participant i</td>
</tr>
<tr>
<td>SKij</td>
<td>the session key shared between user i and user j</td>
</tr>
</tbody>
</table>

3.1. Review of Farash et al.’s protocol

There are three phases in the Farash et al.’s protocol, i.e., system setup phase, registration phase, and authentication phase.

3.1.1. System setup phase

The server S selects the following parameters:
(i) A large prime number P,
(ii) $a \in \mathbb{Z}_P$,
(iii) The hash function $H(\cdot)$ and $H_1(\cdot)$,
(iv) Choose randomly an integer $s \in [1, P + 1]$ as the long-term secret key.

S publishes the parameters $\{P, a, H(\cdot), H_1(\cdot)\}$ and keeps the secret key s.

3.1.2. Registration phase

When a user wants to be a legal user, the following steps will be executed between the user and the server through a secure channel:

i) the user chooses an easy-to-remember password pw_i and an identity ID_i, computes $PW_i = T_{pw_i}(a) \mod P$, then sends (ID_i, PW_i) to the server.

ii) the server computes $VPW_i = H(ID_i, s) + PW_i \mod P$, and stores (ID_i, VPW_i) in its database.

3.1.3. Authentication phase

As shown in Fig. 1, the following steps will be executed when the users A and B want to authenticate each other with the aid of the server S.

1) A chooses $r_A \in [1, P + 1]$ and computes $R_A = T_{r_A}(a) \mod P$, then sends (ID_A, ID_B, R_A) to S.

2) Upon receiving the messages (ID_A, ID_B, R_A), S generates two random numbers $r_{S1}, r_{S2} \in [1, P + 1]$, computes $R_{S1} = T_{r_{S1}}(a) - PW_A \mod P$ and $R_{S2} = T_{r_{S2}}(a) - PW_B \mod P$, sends (ID_A, R_A, R_{S2}) to B.

![Fig. 1. Authentication phase of Farash et al.’s protocol.](060509-3)
3) B generates a random number \(r_B \in [1, p + 1]\), computes \(R_B = T_{r_B}(a) \mod p\), \(K_{BA} = T_{r_B}(R_A) = T_{r_B}r_B(a) \mod p\), \(K_{BS} = T_{r_B}(R_{S2} + PW_B) = T_{r_B}r_B(a) \mod p\), \(Z_{BA} = H(0, ID_B, ID_A, R_B, R_{S2}, Z_{BA}, K_{BA})\) and
\[
Z_{BS} = H(0, ID_B, ID_A, R_B, R_{S2}, Z_{BA}, K_{BS}).
\]
Then, B sends \((R_B, Z_{BS}, Z_{RA})\) to S.

4) Upon receiving the messages \((R_B, Z_{BS}, Z_{RA})\), S computes \(K_{SB} = T_{r_S}(Z_{BS}) = T_{r_B}(a) \mod p\) and checks whether \(Z_{BS}\) and \(H(0, ID_B, ID_A, R_B, R_{S2}, Z_{BS}, K_{SB})\) are equal. If it holds, S computes \(K_{SA} = T_{r_S}(R_A) = T_{r_S}r_S(a) \mod p\) and
\[
Z_{SA} = H(0, ID_A, ID_B, R_{S1}, R_A, R_B, Z_{BA}, K_{SA}).
\]
S sends \((R_{S1}, R_B, Z_{BS}, Z_{SA})\) to A.

5) A computes \(K_{AS} = T_{r_A}(R_{S1} + PW_A) = T_{r_A}r_A(a) \mod p\) and checks whether \(Z_{SA}\) and \(H(0, ID_A, ID_B, R_{S1}, R_A, R_B, Z_{BA}, K_{AS})\) are equal. If it holds, A computes \(K_{AB} = T_{r_A}(R_B) = T_{r_A}r_B(a) \mod p\) and checks whether \(Z_{BA}\) and \(H(0, ID_B, ID_A, R_B, R_{S1}, K_{AB})\) are equal. If it holds, A computes \(Z_{AB} = H(1, ID_A, ID_B, R_B, R_{S1}, Z_{AB}, K_{AB})\) and \(Z_{AS} = H(1, ID_A, ID_B, R_A, Z_{AS}, K_{AS})\). A sends \((Z_{AS}, Z_{AB})\) to S and computes the session key
\[
SK_{AB} = H(2, ID_A, ID_B, R_A, R_B, K_{AB}).
\]

6) S checks whether \(Z_{AS}\) and \(H(1, ID_A, ID_B, R_A, R_{S1}, Z_{AB}, K_{SA})\) are equal. If it holds, S computes \(Z_{SB} = H(1, ID_A, ID_B, R_A, R_B, Z_{AB}, K_{SB})\) and sends \((Z_{SB}, Z_{SB})\) to B.

7) B checks whether \(Z_{SB}\) and \(H(1, ID_A, ID_B, R_A, R_{S2}, K_{AB})\) are equal, and checks whether \(Z_{AB}\) and \(H(1, ID_A, ID_B, R_A, R_B, K_{BA})\) are equal. If they both hold, A is authenticated. B computes the session key \(SK_{BA} = H(2, ID_A, ID_B, R_A, R_B, K_{BA})\).

3.2. Analysis of Farash et al.'s protocol

Farash et al. claimed that their protocol could resist various attacks. Unfortunately, we will demonstrate that their protocol is vulnerable to the off-line password guessing attack. Since Farash et al.'s protocol was executed in the public network, then we could assume that the adversary \(\Phi\) has total control over the communication between the server and the users in the authentication phase. \(\Phi\) may eavesdrop, intercept, insert, modify, or delete any messages in the channel. Through the following steps, \(\Phi\) could extract the password of the user A.

3.2a) At first, the adversary \(\Phi\) masquerades as the legal user A. \(\Phi\) chooses \(r \in [1, p + 1]\) and computes \(R_A = T_r(a) \mod p\), then sends \((ID_A, ID_B, R_A)\) to S.

3.2b) \(\Phi\) intercepts the messages \((R_{S1}, R_B, Z_{BA}, Z_{SA})\) sent by S, where \(R_{S1} = T_{r_S}(a) - PW_A \mod p\).

3.2c) \(\Phi\) guesses a password \(pw\), and computes \(PW_A' = T_{pw}(a) \mod p\), \(K_{AS}' = T_r(R_{S1} + PW_A') = T_{r_S}(a) \mod p\), \(Z_{SA}' = H(0, ID_A, ID_B, R_{S1}, R_A, R_B, Z_{BS}, K_{AS}')\). Then \(\Phi\) verifies whether \(Z_{SA}\) and \(Z_{SA}'\) are equal. If they are equal, it implies that \(\Phi\) guesses the correct password of user A. Otherwise, \(\Phi\) repeatedly performs the step 3.2c) until the correct password is found.

4. Our key agreement protocol

In this section, we propose a new three-party key agreement protocol by using extended chaotic maps. Our protocol consists of three phases, i.e., system setup phase, registration phase, and authentication phase.

4.1. System setup phase

The server \(S\) selects the following parameters:

4.1a) a large prime number \(p\),

4.1b) \(x \in Z_p\),

4.1c) the hash function \(H(\cdot)\),

4.1d) choose randomly an integer \(s \in [1, p + 1]\) as the long-term secret key.

\(S\) publishes the parameters \(\{p, x, H(\cdot)\}\) and keeps the secret key \(s\).

4.2. Registration phase

When a user wants to be a legal user, the following steps will be executed between the user and the server through a secure channel.

Step 1 The user chooses an easy-to-remember password \(pw\) and an identity \(ID_i\), computes \(PW_i = T_{pw}(x) \mod p\), then forwards \((ID_i, PW_i)\) to the server.

Step 2 The server computes \(VPW_i = H(ID_i, s) + PW_i \mod p\), and stores \((ID_i, VPW_i)\) in its database.

4.3. Authentication phase

As shown in Fig. 2, the following steps will be executed when the users A and B want to authenticate each other with the aid of the server.

1) A chooses a random \(a \in [1, p + 1]\) and computes \(R_A = T_a(x) \mod p\), then sends \((ID_A, R_A)\) and \((ID_A, ID_B, R_A)\) to B and S respectively.

2) Upon receiving the messages \((ID_A, R_A)\), B chooses a random \(b \in [1, p + 1]\) and computes \(R_B = T_b(x) \mod p\), then sends \((ID_B, R_B)\) to A. Upon receiving the messages \((ID_A, ID_B, R_A)\), S computes \(PW_A = VPW_A - H(ID_A, s)\) and \(PW_B = VPW_B - H(ID_B, s)\). S generates two random numbers \(S1, S2 \in [1, p + 1]\), computes \(R_{S1} = T_{S1}(x) - PW_A \mod p\) and \(R_{S2} = T_{S2}(x) - PW_B \mod p\), then sends \((ID_A, ID_B, ID_S, R_{S1})\) and \((ID_A, ID_B, ID_S, R_{S2})\) to A and B respectively.

3) Upon receiving the messages \((ID_B, R_B)\) and \((ID_A, ID_B, ID_S, R_{S1})\), A computes \(K_{AS} = T_a(R_{S1} + PW_A) = T_{a,S1}(x) \mod p\) and \(Z_{AS} = H(1, ID_A, ID_B, R_A, R_{S1}, K_{AS})\). Then, A sends \((ID_A, Z_{AS})\) to S. Upon receiving the messages \((ID_A, ID_B, ID_S, R_{S2})\), B computes \(K_{BS} = T_b(R_{S2} + PW_B) = T_{b,S2}(x) \mod p\) and \(Z_{BS} = H(0, ID_B, ID_A, R_B, R_{S2}, K_{BS})\), then sends \((ID_B, R_B, Z_{BS})\) to S.
5. Security analysis

In this section, we analyze the proposed protocol in terms of security requirements and functional requirements.

5.1. Security model

In this subsection, we briefly review the security model proposed by Abdalla and Pointcheval. A three-party key agreement protocol Π which consists of two types of participants, a client U, and a trusted server S. During the execution of a protocol, each of the participants may have several instances. The i-th instance of U (resp. S) is denoted by Π^i_U (resp. Π^i_S). Π^i_U has the partner identification pid^i_U and the session identification sid^i_U.

In the model, the adversary Φ is assumed to control the communication network. Φ interacts with the participants through a bounded number of queries which model the capabilities of the adversary in an actual attack. These queries are as follows.

Execute (Π^i_U, m): This query returns the messages that are exchanged during the honest execution of the protocol Π.

SendClient (Π^i_U, m): When the client instance Π^i_U receives message m which is sent by the adversary, Π^i_U generates a message as the output of this query.

SendServer (Π^i_S, m): When the server instance Π^i_S receives message m which is sent by the adversary, Π^i_S generates a message as the output of this query.
Reveal (Π_i): This query returns the session key of the client instance Π_i.

Corrupt (U): This query returns the password of the client U.

Test (Π_i): This query measures the advantage of the adversary. The adversary can send only one query of this form to a fresh instance Π_i. The instance Π_i flips a coin b and returns the session key if $b = 1$, otherwise, Π_i returns a random value drawn from the space of the session key.

Definition 6 Two instances Π_{i1} and Π_{i2} are considered to be partnered if the following hold: a) they authenticate each other and hold the same session key, b) $sid_{i1} = sid_{i2}$, c) $pid_{i1} = pid_{i2}$.

Definition 7 An instance Π_i is fresh if the following hold: a) Π_i and its partner hold the session key, b) no reveal queries have been made to Π_i or its partner, c) no corrupt queries have been made to the client who has a partner instance with Π_i.

Definition 8 Let $\text{succ} (\Phi)$ denote the event that Φ asks a single test query to some fresh Π_i and outputs a guess bit b' for b, where b is selected in the test query. The advantage of Φ that attacks the protocol Π is defined as $\text{ADV}_{\Pi} (\Phi) = 2 \Pr[\text{succ} (\Phi)] - 1$.

5.2 Security proof

Theorem 1 Assume that hash function H is modeled as random oracles. Let D be the small password dictionary. Let Π describe the protocol defined in Fig. 2. Suppose that DDH assumption holds, then

$$
\text{ADV}_{\Pi,D} (\Phi) \leq \frac{q_H^2}{2^\ell} + \frac{(q_E + q_S)^2}{P} + 2q_E \cdot \text{ADV}_{\text{DDH}}
$$

(1)

where q_H, q_E, and q_S represent the number of hash queries, execute queries and send queries.

We define a sequence game G_i ($0 \leq i \leq 4$) starting with an actual attack game G_0 and ending up with game G_4 where the adversary has no advantage. We define an event Succ_i that Φ correctly guesses the bit b in the test session.

Game G_0: The simulation of this game is the same as the real attack in the random oracle model, we do not modify the simulation of the oracles. Thus, we have

$$
\text{ADV}_{\Pi,D} (\Phi) = 2 \left| \Pr[\text{Succ}_0] - \frac{1}{2} \right|.
$$

(2)

Game G_1: In this game, we simulate the hash oracle H by maintaining a hash h_{Π_i}. The game is indistinguishable from the real execution of the protocol since other oracles are simulated as done in the real attack. Thus, we have

$$
\Pr[\text{Succ}_1] = \Pr[\text{Succ}_0].
$$

(3)

Game G_2: The simulation of this game is identical with G_1 except that it will be terminated if a collision appears in the simulation of the partial transcripts (R_A, R_S) or (R_B, R_S) and the hash values. According to the birthday attack, the probability of collisions of the simulation of H oracle is at most $q_H^2 / 2^{2\ell + 1}$. Similarly, the probability of collisions in the transcript simulation at most $(q_E + q_S)^2 / 2P$. So we have

$$
\left| \Pr[\text{Succ}_2] - \Pr[\text{Succ}_1] \right| \leq \frac{q_H^2}{2^{2\ell + 1}} + \frac{(q_E + q_S)^2}{2P}.
$$

(4)

Game G_3: In this game, we change the simulation of SendClient query. At first, we randomly select partner instance Π_A and Π_B.

- On a query $\text{SendClient}(\Pi_A, (R, \text{start}))$, we choose a number $a \in [1, P + 1]$ and compute $R_A = T_a(x) \mod P$, then return (ID_A, R_A) and (ID_A, ID_B, R_B) to Φ.
- On a query $\text{SendClient}(\Pi_B, (ID_A, R_A))$, we choose a number $b \in [1, P + 1]$ and compute $R_B = T_b(x) \mod P$, then return (ID_B, R_B) to Φ.
- On a query $\text{SendClient}(\Pi_A, \{(ID_B, R_B), (ID_A, ID_B, ID_S, R_S1)\})$, we compute as G_2, then return (ID_A, Z_{AS}) to Φ.
- On a query $\text{SendClient}(\Pi_B, \{(ID_B, ID_B, ID_S, R_S2)\})$, we compute as G_2, then return (ID_B, R_B, Z_{BS}) to Φ.

It is easy to see that this game is indistinguishable from game G_2. Then we have

$$
\Pr[\text{Succ}_3] = \Pr[\text{Succ}_2].
$$

(5)

Game G_4: In this game, we once again change the simulation of SendClient query. At first, we obtain a DDH tuple $(T_a(x), T_b(x), W)$ without knowing values a and b.

- On a query $\text{SendClient}(\Pi_A, (B, \text{start}))$, we set $R_A = T_a(x)$, then return (ID_A, R_A) and (ID_A, ID_B, R_B) to Φ.
- On a query $\text{SendClient}(\Pi_B, (ID_A, R_A))$, we set $R_B = T_b(x)$, then return (ID_B, R_B) to Φ.
- On a query $\text{SendClient}(\Pi_A, \{(ID_B, R_B), (ID_A, ID_B, ID_S, R_S1)\})$, we compute $K_{AS} = T_{S2}(T_a(x))$ and $Z_{AS} = H(1, ID_A, ID_B, R_A, R_S1, K_{AS})$, then return (ID_A, Z_{AS}) to Φ.
- On a query $\text{SendClient}(\Pi_B, \{(ID_B, ID_B, ID_S, R_S2)\})$, we compute $K_{BS} = T_{S2}(T_b(x))$ and $Z_{BS} = H(0, ID_B, ID_A, R_A, R_B, K_{BS})$, then return (ID_B, R_B, Z_{BS}) to Φ.
- On a query $\text{SendClient}(\Pi_A, Z_{AS})$, we set $K_{AB} = W$ and compute $SK_{AB} = H(3, ID_A, ID_B, R_A, R_B, W)$.
- On a query $\text{SendClient}(\Pi_B, Z_{BS})$, we set $K_{BA} = W$ and compute $SK_{BA} = H(3, ID_A, ID_B, R_A, R_B, W)$.

The probability that the adversary Φ picks the selected session as the test session is $1/|E|$. Following the above simulation, in the case of $W = T_{ab}(x)$, this environment for the adversary is equivalent to G_3. Otherwise, this environment for the adversary is equivalent to G_4. Finally, if the adversary believes that he interacted with G_3, then we can determine that $W = T_{ab}(x)$. If the adversary believes that he interacted with G_4, then we can determine that $W \neq T_{ab}(x)$. Then we have

$$
\left| \Pr[\text{Succ}_4] - \Pr[\text{Succ}_3] \right| \leq q_E \cdot \text{ADV}_{\text{DDH}}.
$$

(6)
In game G_A, there are three possible ways that the adversary Φ can distinguish the real session key and the random number.

Case 1: Φ makes hash query on $H(3.ID_A,ID_B,R_A,R_B,W)$. The probability that this event occurs is q_H/P.

Case 2: The corrupt(U_B) query has been made, which implies that the corrupt(U_A) query has not been made. Suppose that the adversary Φ tries to communicate with other participants on behalf of client A. Φ has to obtain the password of client A and compute valid message Z_{AS}. The probability of Φ launching the on-line password guessing attack is q_S/D. The probability for Φ to compute the valid message Z_{AS} is q_S/P. Therefore, the probability for this event to occur is $q_S/|D| + q_S/2^l$.

Case 3: The corrupt(U_A) query has been made, which implies that the corrupt(U_B) query has not been made. Like Case 1, the probability for this event to occur is $q_S/|D| + q_S/2^l$.

Therefore, we have

$$\Pr[\text{Succ}]=\frac{1}{2}+\max\left\{ \frac{q_H q_S}{P |D|} + \frac{q_S}{2^l} \right\}. \quad (7)$$

From Eqs. (2)–(7), we obtain Eq. (1) and Theorem 1.

5.3. Further security discussion of the proposed scheme

In this subsection, we will analyze the proposed protocol and show that it could withstand various known attacks.

5.3.1. Replay attack

In our protocol, the time stamps are not used to resist the replay attack. Due to the freshness of the ephemeral key and no leakage of the participants’ password, the replayed messages that the adversary Φ has intercepted some communication data before will not pass the verification. Therefore, our protocol could resist the replay attack.

5.3.2. Impersonation attack

If the adversary Φ wants to impersonate the user A to the server S, he has to generate the correct messages (ID_A, Z_{AS}), where $Z_{AS} = H(1.ID_A,ID_B,R_A,R_S, K_{AS})$ and $K_{AS} = T_a(R_S + PW_A) = T_a(R_S) \mod P$. However, Φ cannot generate the correct K_{AS} without knowing the password of user A, and Φ cannot generate the correct Z_{AS} without knowing the correct K_{AS}. Therefore, it is impossible for Φ to impersonate the user A to the server S. Through a similar method, we could show Φ cannot impersonate the user B to the server S.

If the adversary Φ wants to impersonate the server S to the user A, he has to generate the correct message (Z_{SA}), where $Z_{SA} = H(2.ID_A,ID_B,R_A,R_B, K_{SA})$. However, Φ cannot generate the correct K_{SA} without knowing the password of user A, and Φ cannot generate the correct Z_{SA} without knowing the correct K_{SA} either. Therefore, it is impossible for Φ to impersonate the server S for the user A. Through a similar method, we could show that Φ cannot impersonate the server S to the user B.

5.3.3. Off-line password guessing attack

The adversary Φ could intercept the messages (R_A, R_{S1}, Z_{AS}, Z_{SA}) transmitted between the user A and the server S. Φ guesses a password p_A and computes $PW_A' = T_{p_A}(x) \mod P$. To verify the correctness of p_A, Φ has to compute $K_{AS}' = CDH (R_A, R_{S1} + PW_A')$, then checks whether Z_{AS} and $H(1.ID_A,ID_B,R_A,R_{S1}, K_{AS})$ are equal. If it holds, p_A is the right password of the user A. However, Φ will face the CDH problem without knowing the discrete logarithm of R_A or $(R_{S1} + PW_A')$. From a similar method, we could show that Φ cannot obtain the password of the user B. Therefore, the off-line password guessing attack is thwarted by the proposed protocol.

5.3.4. Mutual authentication

In our protocol, S checks whether Z_{AS} and $H(1.ID_A,ID_B,R_A,R_{S1}, K_{SA})$ are equal. If it holds, S could deduce that A has the private key pw_A, and authenticate the user A simultaneously. From a similar method, S could authenticate the user B.

A checks whether Z_{SA} and $H(2.ID_A,ID_B,R_A,R_B, K_{AS})$ are equal. If it holds, A could deduce that S has the private key pw_A, and authenticate the server S simultaneously. From a similar method, user B could authenticate the server S.

Thus, our protocol achieves the mutual authentication.

5.3.5. Perfect forward secrecy

Perfect forward security means the compromise that the long-term private keys of one or more entities will not affect the security of other session keys which have been established before. In our protocol, the session key $SK_{AB} = H(3.ID_A,ID_B,R_A,R_B, K_{AB})$ is related to K_{AB}, and K_{AB} is related to nonce a and b, which are chosen by users A and B, respectively. If an adversary wants to compute the previously established session key from $R_A = T_a(x)$ and $R_B = T_b(x)$, then he will face the CDH problem. Thus, our protocol could provide perfect forward secrecy.

6. Performance analysis

In this section, we analyze the performance of a three-party key agreement protocol based on the extended chaotic map. Smart cards are not available in these protocols. We compare our protocol with Lai et al.’s protocol and Farash et al.’s protocol in terms of communication round and computational cost. For the convenience of evaluating the computational cost, some notations are defined as follows:

i) T_C: The Chebyshev chaotic map operation,

ii) T_E: The symmetric encryption or decryption operation,

iii) T_H: The hash function operation.
According to Ref. [20], the time cost of these operations implemented in the environment (CPU: 3.2 GHz, RAM 3.0 G) satisfies the following: $T_C \approx 72T_E \approx 161T_H$, $T_E \approx 2.3T_H$.

To count the number of communication rounds, we adopt two notions, a step and a round which are defined in Ref. [35]. One step is the event that one party sends communicating messages to a single party once. A round is defined as a set of all independent steps that can be processed in parallel.

As can be seen in Table 2, Farash et al.’s protocol is vulnerable to off-line password guessing attack. Lai et al.’s protocol made use of the public key to achieve strong security, while our protocol also achieves strong security without using the server’s public key. The total computational costs are $10T_C + 12T_H$ for Farash et al.’s protocol, and $22T_C + T_E + 10T_H$ for Lai et al.’s protocol. As is well known, a symmetric encryption/decryption operation and a hash operation have the same computational cost. Compared with a hash operation, a chaotic map operation is a time-consuming operation. Therefore, the proposed protocol is more efficient than Farash et al.’s protocol and Lai et al.’s protocol. Furthermore, the proposed protocol needs only four communication rounds rather than six communication rounds to fulfill the authentication.

Therefore, the proposed protocol not only enjoys efficiency, but also achieves security requirements.

7. Conclusions

In this paper, we analyze Farash et al.’s protocol, and propose an improved version with formal proof that preserves the merits of the original scheme. Without any server’s public key and symmetric cryptosystems, the proposed protocol requires only four communication rounds to fulfill authentication. Security and performance analyses show the proposed protocol not only has better performance, but also achieves strong security. Hence, the new protocol is more efficient and practical.

References

[13] Hong L, Mehmet A and Jing X 2014 Nonlinear Dyn. 75 228
[15] Han S 2008 Chaos, Solitons and Fractals 38 764
[16] Xiang T, Wong K and Liao X 2009 Chaos, Solitons and Fractals 40 672
[22] Lee C, Chen C and Wu C 2012 Nonlinear Dyn. 69 79
[23] He D, Chen Y and Chen J 2012 Nonlinear Dyn. 69 1149
[26] Zhao F, Gong P and Li S 2013 Nonlinear Dyn. 74 419
[28] Lee C, Li C and Hsu C 2013 Nonlinear Dyn. 73 125
[29] Xie Q, Zhao J and Yu X 2013 Nonlinear Dyn. 74 1021
[31] Farash M S and Attari M A 2014 Nonlinear Dyn. 75 126
[33] Zhang L 2008 Chaos, Solitons and Fractals 37 669
[34] Abdalla M and Pointcheval D Proceedings of FC’05 3750 341356