## Supporting information for

# Moisture-Sensitive Torsional Cotton Artificial Muscle and Textile

Yuanyuan Li<sup>1,2,3</sup>, Xueqi Leng<sup>3</sup>, Jinkun Sun<sup>3</sup>, Xiang Zhou<sup>2,3,4</sup>\*, Wei Wu<sup>5</sup>, Hong Chen<sup>1,6</sup>\*, Zunfeng Liu<sup>3</sup>\*

<sup>1</sup> College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, P. R. China

<sup>2</sup>School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.

<sup>3</sup> State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin, 300071, China.

<sup>4</sup> Department of Science, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.

<sup>5</sup>The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071, China

<sup>6</sup>School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, Guangdong, P. R. China

<sup>†</sup>Corresponding authors. Emails: <u>liuzunfeng@nankai.edu.cn</u> (Z.L.), ChenhongCS@126.com (H. C), <u>stephanie055@163.com</u> (X.Z)

This supporting information contains:

- 1. Calculation details for torque
- 2. Supplementary Figures and Figure captions (Fig. S1 to S3)
- 3. Supplementary Movie and Movie caption (Movie S1)

#### 1. Calculation details for torque

The helical bias angle ( $\alpha$ ) of a cotton yarn can be calculated using the equation:

$$\tan \alpha = \pi dT \tag{S1}$$

the *d* is the cotton yarn diameter (in meters), and *T* is the inserted twist density (in turns  $m^{-1}$ ). The cotton yarn diameter and the helical angle were obtained from SEM measurements.

For torsional muscle characterization, a high-speed camera recorded the paddle's rotation. The paddle was considered as a semicircular ring, R is the outer radius, and  $R_0$  is the inner radius of the semicircular ring. The R and  $R_0$  were measured as 3.92 and 2.97 mm, respectively. In the torsional actuation experiments, the moment of inertia (I) of the paddle having a weight (M) of 200 mg is calculated as

$$I = M \left( R^2 + R_0^2 \right) / 4 \tag{S2}$$

and therefore the maximum torque  $(\tau)$  can be calculated as

$$\tau = I\alpha \tag{S3}$$

### 2. Supplementary Figures



Figure S1. SEM images of the cross-section of a cotton fiber (a) using focused ion beam and (b) cut in liquid N<sub>2</sub>.



Figure S2. SEM image of a cotton fiber showing the surface morphology.



**Figure S3.** Photographs of a cotton fiber (taken using an OLYMPUS BX53 metalloscope) before (**a**) and after (**b**) absorption of water fog at room temperature. The fiber diameter increases by about 7% after water absorption. The twist density of the cotton yarn was 1200 turns m<sup>-1</sup>. The water fog flux is 0.25 g s<sup>-1</sup> m<sup>-2</sup>.

#### **3. Supplementary Movie**

**Movie S1.** A moisture sensitive window made of cotton yarn artificial muscle closes on exposure to water fog, and opens again when it is dried. The window is made by knitting a 5-cm-long, self-balanced, 2-ply, single filament cotton yarn muscle (with yarn diameter of 140  $\mu$ m and weight of 2.5 mg) through the center of a 5-cm-long, 2-cm-wide textile (weight of 0.14 g).