Top downloaded

    Published in last 1 year| In last 2 years| In last 3 years| All| Most downloaded in recent month | Most downloaded in recent year

    Published in last 1 year
    Please wait a minute...
    For selected: Toggle thumbnails
    Thermoelectric generators and their applications: Progress, challenges, and future prospects
    Nassima Radouane
    Chin. Phys. B, 2023, 32 (5): 057307.   DOI: 10.1088/1674-1056/aca5fd
    Abstract158)   HTML2)    PDF (2763KB)(554)      
    Our community currently deals with issues such as rising electricity costs, pollution, and global warming. Scientists work to improve energy harvesting-based power generators in order to reduce their impacts. The Seebeck effect has been used to illustrate the capacity of thermoelectric generators (TEGs) to directly convert thermal energy to electrical energy. They are also ecologically beneficial since they do not include chemical products, function quietly because they lack mechanical structures and/or moving components, and may be built using different fabrication technologies such as three-dimentional (3D) printing, silicon technology, and screen printing, etc. TEGs are also position-independent and have a long operational lifetime. TEGs can be integrated into bulk and flexible devices. This review gives further investigation of TEGs, beginning with a full discussion of their operating principle, kinds, materials utilized, figure of merit, and improvement approaches, which include various thermoelectric material arrangements and utilised technologies. This paper also discusses the use of TEGs in a variety of disciplines such as automobile and biomedical.
    Room-temperature creation and manipulation of skyrmions in MgO/FeNiB/Mo multilayers
    Wen-Hui Liang(梁文会), Jian Su(苏鉴), Yu-Tong Wang(王雨桐), Ying Zhang(张颖), Feng-Xia Hu(胡凤霞), and Jian-Wang Cai(蔡建旺)
    Chin. Phys. B, 2023, 32 (12): 127504.   DOI: 10.1088/1674-1056/acf5d4
    Abstract403)   HTML0)    PDF (6693KB)(479)      
    Magnetic skyrmions in multilayer structures are considered as a new direction for the next generation of storage due to their small size, strong anti-interference ability, high current-driven mobility, and compatibility with existing spintronic technology. In this work, we present a tunable room temperature skyrmion platform based on multilayer stacks of MgO/FeNiB/Mo. We systematically studied the creation of magnetic skyrmions in MgO/FeNiB/Mo multilayer structures with perpendicular magnetic anisotropy (PMA). In these structures, the magnetic anisotropy changes from PMA to in-plane magnetic anisotropy (IMA) as the thickness of FeNiB layer increases. By adjusting the applied magnetic field and electric current, stable and high-density skyrmions can be obtained in the material system. The discovery of this material broadens the exploration of new materials for skyrmion and promotes the development of spintronic devices based on skyrmions.
    Enhanced phase sensitive amplification towards improving noise immunity
    Hui Guo(郭辉), Zhi Li(李治), Hengxin Sun(孙恒信), Kui Liu(刘奎), and Jiangrui Gao(郜江瑞)
    Chin. Phys. B, 2023, 32 (5): 054204.   DOI: 10.1088/1674-1056/acbdeb
    Abstract432)   HTML28)    PDF (1960KB)(453)      
    Quantum states are essential resource for quantum-enhanced applications. Loss incurred in the distribution channel, however, dissipates the high signal-to-noise ratio advantage enjoyed by the squeezed state. Here, we first demonstrate noise immunity enhancement by using phase-sensitive amplifier (PSA) with measurement-based noiseless linear amplifier (MB-NLA). We explore the signal transfer capability with the amplifier in a noisy channel. The MB-NLA enhanced PSA has obvious suppression effect on channel noises, especially it has improvement for the noise contaminated signal. Better performance can be achieved by flexibly adjusting amplifier parameters. With the amplifier, it is promising to overcome the entanglement-distribution loss and show its superiority in squeezing based quantum sensing.
    Combination of density-clustering and supervised classification for event identification in single-molecule force spectroscopy data
    Yongyi Yuan(袁泳怡), Jialun Liang(梁嘉伦), Chuang Tan(谭创), Xueying Yang(杨雪滢), Dongni Yang(杨东尼), and Jie Ma(马杰)
    Chin. Phys. B, 2023, 32 (10): 108702.   DOI: 10.1088/1674-1056/acf03e
    Abstract392)   HTML5)    PDF (2308KB)(439)      
    Single-molecule force spectroscopy (SMFS) measurements of the dynamics of biomolecules typically require identifying massive events and states from large data sets, such as extracting rupture forces from force-extension curves (FECs) in pulling experiments and identifying states from extension-time trajectories (ETTs) in force-clamp experiments. The former is often accomplished manually and hence is time-consuming and laborious while the latter is always impeded by the presence of baseline drift. In this study, we attempt to accurately and automatically identify the events and states from SMFS experiments with a machine learning approach, which combines clustering and classification for event identification of SMFS (ACCESS). As demonstrated by analysis of a series of data sets, ACCESS can extract the rupture forces from FECs containing multiple unfolding steps and classify the rupture forces into the corresponding conformational transitions. Moreover, ACCESS successfully identifies the unfolded and folded states even though the ETTs display severe nonmonotonic baseline drift. Besides, ACCESS is straightforward in use as it requires only three easy-to-interpret parameters. As such, we anticipate that ACCESS will be a useful, easy-to-implement and high-performance tool for event and state identification across a range of single-molecule experiments.
    Emergence of correlations in twisted monolayer-trilayer graphene heterostructures
    Zhang Zhou(周璋), Kenji Watanabe, Takashi Taniguchi, Xiao Lin(林晓), Jinhai Mao(毛金海), and Hong-Jun Gao(高鸿钧)
    Chin. Phys. B, 2023, 32 (9): 097203.   DOI: 10.1088/1674-1056/ace3a8
    Abstract378)   HTML22)    PDF (1897KB)(434)      
    Twisted bilayer graphene heterostructures have recently emerged as a well-established platform for studying strongly correlated phases, such as correlated insulating, superconducting, and topological states. Extending this notion to twisted multilayer graphene heterostructures has exhibited more diverse correlated phases, as some fundamental properties related to symmetry and band structures are correspondingly modified. Here, we report the observations of correlated states in twisted monolayer-trilayer (Bernal stacked) graphene heterostructures. Correlated phases at integer fillings of the moiré unit cell are revealed at a high displacement field and stabilized with a moderate magnetic field on the electron-doping side at a twist angle of 1.45°, where the lift of degeneracy at the integer fillings is observed in the Landau fan diagram. Our results demonstrate the effectiveness of moiré engineering in an extended structure and provide insights into electric-field tunable correlated phases.
    Tunable correlation in twisted monolayer-trilayer graphene
    Dongdong Ding(丁冬冬), Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明)
    Chin. Phys. B, 2023, 32 (6): 067204.   DOI: 10.1088/1674-1056/acc8c3
    Abstract429)   HTML13)    PDF (1531KB)(426)      
    Flat-band physics of moiré superlattices, originally discovered in the celebrated twisted bilayer graphene, have recently been intensively explored in multilayer graphene systems that can be further controlled by electric field. In this work, we experimentally find the evidence of correlated insulators at half filling of the electron moiré band of twisted monolayer-trilayer graphene with a twist angle around 1.2°. Van Hove singularity (VHS), manifested as enhanced resistance and zero Hall voltage, is observed to be distinct in conduction and valence flat bands. It also depends on the direction and magnitude of the displacement fields, consistent with the asymmetric crystal structure. While the resistance ridges at VHS can be enhanced by magnetic fields, when they cross commensurate fillings of the moiré superlattice in the conduction band, the enhancement is so strong that signatures of correlated insulator appear, which may further develop into an energy gap depending on the correlation strength. At last, Fermi velocity derived from temperature coefficients of resistivity is compared between conduction and valence bands with different displacement fields. It is found that electronic correlation has a negative dependence on the Fermi velocity, which in turn could be used to quantify the correlation strength.
    Periodic electron oscillation in coupled two-dimensional lattices
    Yan-Yan Lu(陆艳艳), Chao Wang(王超), Jin-Yi Jiang(将金益), Jie Liu(刘洁), and Jian-Xin Zhong(钟建新)
    Chin. Phys. B, 2023, 32 (7): 070306.   DOI: 10.1088/1674-1056/acce93
    Abstract356)   HTML13)    PDF (1670KB)(405)      
    We study the time evolution of electron wavepacket in the coupled two-dimensional (2D) lattices with mirror symmetry, utilizing the tight-binding Hamiltonian framework. We show analytically that the wavepacket of an electron initially located on one atomic layer in the coupled 2D square lattices exhibits a periodic oscillation in both the transverse and longitudinal directions. The frequency of this oscillation is determined by the strength of the interlayer hopping. Additionally, we provide numerical evidence that a damped periodic oscillation occurs in the coupled 2D disordered lattices with degree of disorder W, with the decay time being inversely proportional to the square of W and the frequency change being proportional to the square of W, which is similar to the case in the coupled 1D disordered lattices. Our numerical results further confirm that the periodic and damped periodic electron oscillations are universal, independent of lattice geometry, as demonstrated in AA-stacked bilayer and tri-layer graphene systems. Unlike the Bloch oscillation driven by electric fields, the periodic oscillation induced by interlayer coupling does not require the application of an electric field, has an ultrafast periodicity much shorter than the electron decoherence time in real materials, and can be tuned by adjusting the interlayer coupling. Our findings pave the way for future observation of periodic electron oscillation in material systems at the atomic scale.
    Atomistic simulations of graphene origami: Dynamics and kinetics
    Panpan Zhang(张盼盼), Haihong Jia(贾海洪), Yan-Fang Zhang(张艳芳), and Shixuan Du(杜世萱)
    Chin. Phys. B, 2023, 32 (8): 087107.   DOI: 10.1088/1674-1056/acd527
    Abstract460)   HTML8)    PDF (2692KB)(403)      
    Origami offers two-dimensional (2D) materials with great potential for applications in flexible electronics, sensors, and smart devices. However, the dynamic process, which is crucial to construct origami, is too fast to be characterized by using state-of-the-art experimental techniques. Here, to understand the dynamics and kinetics at the atomic level, we explore the edge effects, structural and energy evolution during the origami process of an elliptical graphene nano-island (GNI) on a highly ordered pyrolytic graphite (HOPG) substrate by employing steered molecular dynamics simulations. The results reveal that a sharper armchair edge is much easier to be lifted up and realize origami than a blunt zigzag edge. The potential energy of the GNI increases at the lifting-up stage, reaches the maximum at the beginning of the bending stage, decreases with the formation of van der Waals overlap, and finally reaches an energy minimum at a half-folded configuration. The unfolding barriers of elliptical GNIs with different lengths of major axis show that the major axis should be larger than 242 Å to achieve a stable single-folded structure at room temperature. These findings pave the way for pursuing other 2D material origami and preparing origami-based nanodevices.
    Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
    Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰)
    Chin. Phys. B, 2023, 32 (8): 087108.   DOI: 10.1088/1674-1056/acd7d5
    Abstract326)   HTML10)    PDF (1097KB)(352)      
    Ruddlesden-Popper iridate Sr3Ir2O7 is a spin-orbit coupled Mott insulator. Hole doped Sr3Ir2O7 provides an ideal platform to study the exotic quantum phenomena that occur near the metal-insulator transition (MIT) region. Rh substitution of Ir is an effective method to induce hole doping into Sr3Ir2O7. However, the highest doping level reported in Sr3(Ir1-xRhx)2O7 single crystals was only around 3%, which is far from the MIT region. In this paper, we report the successful growth of single crystals of Sr3(Ir1-xRhx)2O7 with a doping level of ~ 9%. The samples have been fully characterized, demonstrating the high quality of the single crystals. Transport measurements have been carried out, confirming the tendency of MIT in these samples. The electronic structure has also been examined by angle-resolved photoemission spectroscopy (ARPES) measurements. Our results establish a platform to investigate the heavily hole doped Sr3Ir2O7 compound, which also provide new insights into the MIT with hole doping in this material system.
    General mapping of one-dimensional non-Hermitian mosaic models to non-mosaic counterparts: Mobility edges and Lyapunov exponents
    Sheng-Lian Jiang(蒋盛莲), Yanxia Liu(刘彦霞), and Li-Jun Lang(郎利君)
    Chin. Phys. B, 2023, 32 (9): 097204.   DOI: 10.1088/1674-1056/ace426
    Abstract254)   HTML8)    PDF (2083KB)(352)      
    We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts. This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critical points of localization or Lyapunov exponents of localized states in the corresponding non-mosaic models have already been analytically solved. To demonstrate the validity of this mapping, we apply it to two non-Hermitian localization models: an Aubry-André-like model with nonreciprocal hopping and complex quasiperiodic potentials, and the Ganeshan-Pixley-Das Sarma model with nonreciprocal hopping. We successfully obtain the mobility edges and Lyapunov exponents in their mosaic models. This general mapping may catalyze further studies on mobility edges, Lyapunov exponents, and other significant quantities pertaining to localization in non-Hermitian mosaic models.
    Stability of the topological quantum critical point between multi-Weyl semimetal and band insulator
    Zhao-Kun Yang(杨兆昆), Jing-Rong Wang(王景荣), and Guo-Zhu Liu(刘国柱)
    Chin. Phys. B, 2023, 32 (5): 056401.   DOI: 10.1088/1674-1056/acbaf2
    Abstract358)   HTML22)    PDF (1702KB)(331)      
    One could tune a topological double-Weyl semimetal or a topological triple-Weyl semimetal to become a topologically trivial insulator by opening a band gap. This kind of quantum phase transition is characterized by the change of certain topological invariant. A new gapless semimetallic state emerges at each topological quantum critical point. Here we perform a renormalization group analysis to investigate the stability of such critical points against perturbations induced by random scalar potential and random vector potential. We find that the quantum critical point between double-Weyl semimetal and band insulator is unstable and can be easily turned into a compressible diffusive metal by any type of weak disorder. The quantum critical point between triple-Weyl semimetal and band insulator flows to a stable strong-coupling fixed point if the system contains a random vector potential merely along the z-axis, but becomes a compressible diffusive metal when other types of disorders exist.
    In-plane uniaxial-strain tuning of superconductivity and charge-density wave in CsV3Sb5
    Xiaoran Yang(杨晓冉), Qi Tang(唐绮), Qiuyun Zhou(周秋韵), Huaiping Wang(王怀平), Yi Li(李意), Xue Fu(付雪), Jiawen Zhang(张加文), Yu Song(宋宇), Huiqiu Yuan(袁辉球), Pengcheng Dai(戴鹏程), and Xingye Lu(鲁兴业)
    Chin. Phys. B, 2023, 32 (12): 127101.   DOI: 10.1088/1674-1056/acf707
    Abstract281)   HTML0)    PDF (1831KB)(323)      
    The kagome superconductor CsV3Sb5 with exotic electronic properties has attracted substantial research interest, and the interplay between the superconductivity and the charge-density wave is crucial for understanding its unusual electronic ground state. In this work, we performed resistivity and AC magnetic susceptibility measurements on CsV3Sb5 single crystals uniaxially-strained along [100] and [110] directions. We find that the uniaxial-strain tuning effect of Tc (Tc/dε) and TCDW (dTCDW/dε) are almost identical along these distinct high-symmetry directions. These findings suggest the in-plane uniaxial-strain-tuning of Tc and TCDW in CsV3Sb5 are dominated by associated c-axis strain, whereas the response to purely in-plane strains is likely small.
    Direct measurement of nonlocal quantum states without approximation
    Gang Yang(杨冈), Ran Yang(杨然), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁)
    Chin. Phys. B, 2023, 32 (11): 110306.   DOI: 10.1088/1674-1056/acf5d7
    Abstract281)   HTML14)    PDF (503KB)(315)      
    Efficient acquiring information from a quantum state is important for research in fundamental quantum physics and quantum information applications. Instead of using standard quantum state tomography method with reconstruction algorithm, weak values were proposed to directly measure density matrix elements of quantum state. Recently, similar to the concept of weak value, modular values were introduced to extend the direct measurement scheme to nonlocal quantum wavefunction. However, this method still involves approximations, which leads to inherent low precision. Here, we propose a new scheme which enables direct measurement for ideal value of the nonlocal density matrix element without taking approximations. Our scheme allows more accurate characterization of nonlocal quantum states, and therefore has greater advantages in practical measurement scenarios.
    Remote entangling gate between a quantum dot spin and a transmon qubit mediated by microwave photons
    Xing-Yu Zhu(朱行宇), Le-Tian Zhu(朱乐天), Tao Tu(涂涛), and Chuan-Feng Li(李传锋)
    Chin. Phys. B, 2024, 33 (2): 020315.   DOI: 10.1088/1674-1056/ad1747
    Abstract336)   HTML6)    PDF (729KB)(306)      
    Spin qubits and superconducting qubits are promising candidates for realizing solid-state quantum information processors. Designing a hybrid architecture that combines the advantages of different qubits on the same chip is a highly desirable but challenging goal. Here we propose a hybrid architecture that utilizes a high-impedance SQUID array resonator as a quantum bus, thereby coherently coupling different solid-state qubits. We employ a resonant exchange spin qubit hosted in a triple quantum dot and a superconducting transmon qubit. Since this hybrid system is highly tunable, it can operate in a dispersive regime, where the interaction between the different qubits is mediated by virtual photons. By utilizing such interactions, entangling gate operations between different qubits can be realized in a short time of 30 ns with a fidelity of up to 96.5% under realistic parameter conditions. Further utilizing this interaction, remote entangled state between different qubits can be prepared and is robust to perturbations of various parameters. These results pave the way for exploring efficient fault-tolerant quantum computation on hybrid quantum architecture platforms.
    High responsivity photodetectors based on graphene/WSe2 heterostructure by photogating effect
    Shuping Li(李淑萍), Ting Lei(雷挺), Zhongxing Yan(严仲兴), Yan Wang(王燕), Like Zhang(张黎可), Huayao Tu(涂华垚), Wenhua Shi(时文华), and Zhongming Zeng(曾中明)
    Chin. Phys. B, 2024, 33 (1): 018501.   DOI: 10.1088/1674-1056/acfa84
    Abstract293)   HTML12)    PDF (3677KB)(304)      
    Graphene, with its zero-bandgap electronic structure, is a highly promising ultra-broadband light absorbing material. However, the performance of graphene-based photodetectors is limited by weak absorption efficiency and rapid recombination of photoexcited carriers, leading to poor photodetection performance. Here, inspired by the photogating effect, we demonstrated a highly sensitive photodetector based on graphene/WSe2 vertical heterostructure where the WSe2 layer acts as both the light absorption layer and the localized grating layer. The graphene conductive channel is induced to produce more carriers by capacitive coupling. Due to the strong light absorption and high external quantum efficiency of multilayer WSe2, as well as the high carrier mobility of graphene, a high photocurrent is generated in the vertical heterostructure. As a result, the photodetector exhibits ultra-high responsivity of 3.85×104 A/W and external quantum efficiency of 1.3×107%. This finding demonstrates that photogating structures can effectively enhance the sensitivity of graphene-based photodetectors and may have great potential applications in future optoelectronic devices.
    Single-electron transport in H2O@C60 single-molecule transistors
    Bowen Liu(刘博文), Jun Chen(陈俊), Yiping Ouyang(欧阳一平), Minhao Zhang(张敏昊), Yuan-Zhi Tan(谭元植), and Fengqi Song(宋凤麒)
    Chin. Phys. B, 2023, 32 (6): 063601.   DOI: 10.1088/1674-1056/acc801
    Abstract219)   HTML5)    PDF (4284KB)(293)      
    Single-molecule transistors (SMTs) based on fullerenes and their derivatives have been recognized as a long-sought platform for studying the single-electron transport properties. H2O@C60 is a combination of fullerene and H2O, a typical light molecule. Here we use the ‘molecular surgery’ technique to synthesize the H2O@C60 molecule and then construct the H2O@C60 SMTs, together with the C60 SMTs. Evidences for single-electron transport have been obtained in our measurements, including explicit Coulomb blockade and Coulomb oscillations. We then calculate the detailed parameters of the H2O@C60 and C60 SMTs using a capacitance model derived from the Coulomb diamond feature, which gives a capacitance ratio of 1:5.05:8.52 for the H2O@C60 SMT and 1:29.5:74.8 for the C60 SMT. Moreover, the gate efficiency factor α turns out to be 0.0686 in the H2O@C60 SMT, about ten times larger than that in the C60 SMT. We propose that the enhanced gate efficiency in H2O@C60 SMT may be induced by the closer attachment of molecular orbital electron clouds to the gate substrate due to polarization effects of H2O.
    Current sensor based on diamond nitrogen-vacancy color center
    Zi-Yang Shi(史子阳), Wei Gao(高伟), Qi Wang(王启), Hao Guo(郭浩), Jun Tang(唐军), Zhong-Hao Li(李中豪), Huan-Fei Wen(温焕飞), Zong-Min Ma(马宗敏), and Jun Liu(刘俊)
    Chin. Phys. B, 2023, 32 (7): 070704.   DOI: 10.1088/1674-1056/acc3fe
    Abstract180)   HTML4)    PDF (1692KB)(291)      
    High precision current measurement is very important for the calibration of various high-precision equipment and the measurement of other precision detection fields. A new current sensor based on diamond nitrogen-vacancy (NV) color center magnetic measurement method is proposed to realize the accurate measurement of current. This new current method can greatly improve the accuracy of current measurement. Experiments show that the linearity of the current sensor based on diamond NV color center can reach up to 33 ppm, which is superior to other current sensors and solves the problem of low linearity. When the range of input current is 5-40 A, the absolute error of the calculated current is less than 51 μA, and the relative error is 2.42×10-6 at 40 A. Combined with the research content and results of the experiment, the application of the current sensor in the field of current precision measurement is prospected.
    The application of quantum coherence as a resource
    Si-Yuan Liu(刘思远) and Heng Fan(范桁)
    Chin. Phys. B, 2023, 32 (11): 110304.   DOI: 10.1088/1674-1056/acfa85
    Abstract112)   HTML2)    PDF (871KB)(287)      
    Quantum coherence is a basic concept in quantum mechanics, representing one of the most fundamental characteristics that distinguishes quantum mechanics from classical physics. Quantum coherence is the basis for multi-particle interference and quantum entanglement. It is also the essential ingredient for various physical phenomena in quantum optics, quantum information, etc. In recent years, with the proposal of a quantum coherence measurement scheme based on a resource theory framework, quantum coherence as a quantum resource has been extensively investigated. This article reviews the resource theories of quantum coherence and introduces the important applications of quantum coherence in quantum computing, quantum information, and interdisciplinary fields, particularly in quantum thermodynamics and quantum biology. Quantum coherence and its applications are still being explored and developed. We hope this review can provide inspiration for relevant research.
    Electronic states of domain walls in commensurate charge density wave ground state and mosaic phase in 1T-TaS2
    Yan Li(李彦), Yao Xiao(肖遥), Qi Zheng(郑琦), Xiao Lin(林晓), Li Huang(黄立), and Hong-Jun Gao(高鸿钧)
    Chin. Phys. B, 2023, 32 (7): 077101.   DOI: 10.1088/1674-1056/accd4f
    Abstract263)   HTML5)    PDF (2110KB)(271)      
    Domain walls (DWs) in the charge-density-wave (CDW) Mott insulator 1T-TaS2 have unique localized states, which play an important role in exploring the electronic properties of the material. However, the electronic states in DWs in 1T-TaS2 have not been clearly understood, mostly due to the complex structures, phases, and interlayer stacking orders in the DW areas. Here, we explored the electronic states of DWs in the large-area CDW phase and mosaic phase of 1T-TaS2 by scanning tunneling spectroscopy. Due to the different densities of DWs, the electronic states of DWs show distinct features in these phases. In the large area CDW phase, both the domain and the DWs (DW1, DW2, DW4) have zero conductance at the Fermi level; while in the mosaic phase, they can be metallic or insulating depending on their environments. In areas with a high density of DWs, some electronic states were observed both on the DWs and within the domains, indicating delocalized states over the whole region. Our work contributes to further understanding of the interplay between CDW and electron correlations in 1T-TaS2.
    Visualizing interface states in In2Se3–WSe2 monolayer lateral heterostructures
    Da Huo(霍达), Yusong Bai(白玉松), Xiaoyu Lin(林笑宇), Jinghao Deng(邓京昊), Zemin Pan(潘泽敏), Chao Zhu(朱超), Chuansheng Liu(刘传胜), and Chendong Zhang(张晨栋)
    Chin. Phys. B, 2023, 32 (5): 056803.   DOI: 10.1088/1674-1056/acbaef
    Abstract253)   HTML15)    PDF (1539KB)(270)      
    Recent findings of two-dimensional (2D) ferroelectric (FE) materials provide more possibilities for the development of 2D FE heterostructure electronic devices based on van der Waals materials and the application of FE devices under the limit of atomic layer thickness. In this paper, we report the in-situ fabrication and probing of electronic structures of In$_{2}$Se$_{3}$-WSe$_{2}$ lateral heterostructures, compared with most vertical FE heterostructures at present. Through molecular beam epitaxy, we fabricated lateral heterostructures with monolayer WSe$_{2}$ (three atomic layers) and monolayer In$_{2}$Se$_{3}$ (five atomic layers). Type-II band alignment was found to exist in either the lateral heterostructure composed of anti-FE $\beta '$-In$_{2}$Se$_{3}$ and WSe$_{2}$ or the lateral heterostructure composed of FE $\beta^*$-In$_{2}$Se$_{3}$ and WSe$_{2}$, and the band offsets could be modulated by ferroelectric polarization. More interestingly, interface states in both lateral heterostructures acted as narrow gap quantum wires, and the band gap of the interface state in the $\beta^*$-In$_{2}$Se$_{3}$-WSe$_{2}$ heterostructure was smaller than that in the $\beta '$-In$_{2}$Se$_{3}$ heterostructure. The fabrication of 2D FE heterostructure and the modulation of interface state provide a new platform for the development of FE devices.
ISSN 1674-1056   CN 11-5639/O4

Current issue

, Vol. 33, No. 3

Previous issues

1992 - present