Content of SPECIAL TOPIC in our journal

        Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For selected: Toggle thumbnails
    Geometric stability and electronic structure of infinite and finite phosphorus atomic chains
    Jingsi Qiao(乔婧思), Linwei Zhou(周霖蔚), Wei Ji(季威)
    Chin. Phys. B, 2017, 26 (3): 036803.   DOI: 10.1088/1674-1056/26/3/036803
    Abstract796)   HTML    PDF (2054KB)(417)      

    One-dimensional mono- or few-atomic chains were successfully fabricated in a variety of two-dimensional materials, like graphene, BN, and transition metal dichalcogenides, which exhibit striking transport and mechanical properties. However, atomic chains of black phosphorus (BP), an emerging electronic and optoelectronic material, is yet to be investigated. Here, we comprehensively considered the geometry stability of six categories of infinite BP atomic chains, transitions among them, and their electronic structures. These categories include mono- and dual-atomic linear, armchair, and zigzag chains. Each zigzag chain was found to be the most stable in each category with the same chain width. The mono-atomic zigzag chain was predicted as a Dirac semi-metal. In addition, we proposed prototype structures of suspended and supported finite atomic chains. It was found that the zigzag chain is, again, the most stable form and could be transferred from mono-atomic armchair chains. An orientation dependence was revealed for supported armchair chains that they prefer an angle of roughly 35°-37° perpendicular to the BP edge, corresponding to the [110] direction of the substrate BP sheet. These results may promote successive research on mono- or few-atomic chains of BP and other two-dimensional materials for unveiling their unexplored physical properties.

ISSN 1674-1056   CN 11-5639/O4

Current issue

, Vol. 33, No. 3

Previous issues

1992 - present