%A Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣) %T Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure %0 Journal Article %D 2021 %J Chin. Phys. B %R 10.1088/1674-1056/abf643 %P 76201-076201 %V 30 %N 7 %U {https://cpb.iphy.ac.cn/CN/abstract/article_123719.shtml} %8 2021-06-22 %X Layered lanthanum silver antimonide LaAgSb2 exhibits both charge density wave (CDW) order and Dirac-cone-like band structure at ambient pressure. Here, we systematically investigate the pressure evolution of structural and electronic properties of LaAgSb2 single crystal. We show that the CDW order is destabilized under compression, as evidenced by the gradual suppression of magnetoresistance. At PC~ 22 GPa, synchrotron x-ray diffraction and Raman scattering measurements reveal a structural modification at room-temperature. Meanwhile, the sign change of the Hall coefficient is observed at 5 K. Our results demonstrate the tunability of CDW order in the pressurized LaAgSb2 single crystal, which can be helpful for its potential applications in the next-generation devices.