%A Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁) %T Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires %0 Journal Article %D 2020 %J Chin. Phys. B %R 10.1088/1674-1056/ab90f0 %P 84402-084402 %V 29 %N 8 %U {https://cpb.iphy.ac.cn/CN/abstract/article_122703.shtml} %8 2020-08-05 %X Unveiling the thermal transport properties of various one-dimensional (1D) or quasi-1D materials like nanowires, nanotubes, and nanorods is of great importance both theoretically and experimentally. The dimension or size dependence of thermal conductivity is crucial in understanding the phonon-phonon interaction in the low-dimensional systems. In this paper, we experimentally investigate the size-dependent thermal conductivity of individual single crystalline α-Fe2O3 nanowires collaborating the suspended thermal bridge method and the focused electron-beam self-heating technique, with the sample diameter (d) ranging from 180 nm to 661 nm and length (L) changing from 4.84 μm to 20.73 μm. An empirical relationship for diameter-/length-dependent thermal conductivity is obtained, which shows an approximately linear dependence on the aspect ratio (L/(1+Cd)) at T=300 K, where C is a fitting parameter. This is related to the boundary scattering and diameter effect of α-Fe2O3 nanowires although rigorous calculations are needed to confirm the result.